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In the last few years we have witnessed the development of sophisticated attacks that target

critical infrastructures. Such attacks can cause catastrophic damage; for instance, attacks

on the electricity system can impact a variety of industrial, commercial, and residential

customers. Protecting critical infrastructures remains a challenge, because the cyber threats

evolve in time and these systems have both correlated risks and information asymmetries.

Moreover, many security problems arise due to improper economic incentives, rather than

technical difficulties. In this research we investigate how economic policies affect the security

of critical infrastructures.

First, we illustrate the importance of economic incentives showing how policies designed to

protect systems have the opposite effect. In particular, we analyze how a company exploited

flaws in contractual policies (asymmetric information) to profit by sponsoring attacks. We

also show how to redesign the policies to prevent these situations.

Second, we analyze attacks that leverage the market’s infrastructure to manipulate the

demand of users. We find that an attacker with enough influence can either increase his profit

(protecting his anonymity) or cause blackouts. The attacker can succeed in markets with

both centralized and distributed structures; however, attacks on distributed systems produce

less profit, but also make it more difficult to detect and penalize attacks.

Third, we investigate the optimal allocation of resources to protect systems against cyber

threats that evolve in time. We model the evolution of threats with a Markov process and

contemplate three protection schemes: prevention (e.g., secure code development), detection

(intrusion detection systems), and risk transfer (e.g., cyber insurance). We find that uncertain-

ties in the system’s state make insurance more attractive as a risk management tool, but still,
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the defenders need incentives to purchase cyber insurance. Moreover, insurance can improve

the investment in either prevention or detection; however, policies with indemnity subsidies

and unlimited coverage can introduce perverse incentives that degrade the investments in

security.
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CHAPTER 1

INTRODUCTION

During the past decade our power grid, vehicles, medical devices, buildings, and many other

systems we interact with have been modernized with embedded computing systems. Such

systems that connect the physical world to cyber space are usually referred to as Cyber

Physical Systems (CPSs). While these systems provide new societal benefits, they may also

allow cyber attackers to affect our physical world causing kinetic effects. For example, cyber

attacks against the power grid can cause blackouts, attacks against modern vehicles can

cause accidents, and attacks against medical devices can harm their users (Koppel, 2016;

Greenberg, 2015; Newman, 2015; Leverett et al., 2017).

Most industries face different challenges investing in security protections, because they

cope with different threats. In particular, there is a difference between industries that use

conventional Information Technology (IT) systems and industries that work with CPSs.

On one hand, companies that manage traditional IT assets (e.g., have a web-presence, or

handle any financial transaction) have experience dealing with increasingly sophisticated

and well-organized criminal groups that try to compromise their systems for financial gains.

These companies cannot underestimate their cyber risks; therefore, they constantly upgrade

and test their systems to minimize losses.

Although attacks targeting physical processes exist,1 they are still rare and not openly

reported. Therefore, most industries in the CPS domain have never seen attacks sabotaging

their physical processes and they do not see a clear business case for investing in information

security protections (Langner and Pederson, 2013).

Firms often use risk management practices to reach an acceptable level of risk balancing

the cost mitigation and the benefits. This attitude makes sense from a business perspective,

but can be insufficient in the protection of CPS (Langner and Pederson, 2013). For example,

the risk assessments of critical infrastructures can ignore intangible damage or negative

externalities suffered by the society. Therefore, corporative decisions can fail to (completely)

handle risks that affect the society.

As the U.S. Department of Energy (DoE) stated in their Energy Delivery Systems Cyber

Security Roadmap (Batz et al., 2011) “Making a strong business case for cyber security

1Examples of cybernetic attacks with physical consequences are Stuxnet (Zetter, 2014), the attacks against
the power grid in Ukraine (Zetter, 2016), and the Triton malware attacking safety systems in the middle
east (Finkle, 2017).
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investments is complicated by the difficulty of quantifying risk in an environment of rapidly

changing, unpredictable threats with consequences that are hard to demonstrate.” This

has left our physical critical infrastructures fairly vulnerable to computer attacks and with

technology that is decades behind the current security best practices used in other IT domains.

Unlike other national security issues, the government cannot deal with some cyber threats

through diplomatic or military actions, due to difficulties exercising retaliation against cyber

adversaries.2 Moreover, market incentives alone have not created momentum on industries

in CPS to improve their security posture. The failure to properly secure CPS (especially

critical infrastructures) has resulted in several calls for government regulation of cyber

security (Schneier, 2017; Fu, 2016; Vardi, 2017; Stark, 2017; Pagliery, 2016). However,

the industry in general has pushed back against regulation,3 arguing that they can stifle

innovation.4

Alternatively, instead of mandating regulations, the government can create economic

policies that incentivize investments in security. A common economic incentive used in public

policies consists in making companies liable for the negative effects of their activities (e.g.,

environmental damage), so that they adopt precautions to avoid fines. However, this scheme

can fail if the authorities cannot determine the culpability of each company. In particular,

interdependencies and correlations among companies can difficult the assessment of liabilities

of cyber events (Böhme and Schwartz, 2010; Laszka et al., 2014). For example, companies can

suffer attacks crafted using vulnerabilities of a third party software, rather than vulnerabilities

in their own systems (Cherepanov, 2017; Krebs, 2014). Such interdependencies can worsen

security problems, because many individuals who do not suffer the consequences of attacks

remain unprotected, affecting other parties. This occurs to the owners of internet of things

(IoT) device, who aren’t concerned for their security because other parties bear the cost of

denial of service (DoS) attacks (Anderson, 2001). Similarly, software companies usually adopt

contractual policies that shield them from liabilities.

2Retaliation is difficult and dangerous, because 1) adversaries usually protect their identities covering
their traces and/or impersonating third parties; and 2) cyber attacks against a particular target can affect
other parties, since systems are highly interconnected. A controversy among the U.S. and Germany offers
a clear example of the risks of retaliation (Nakashima, 2017). The dispute started because the U.S. Cyber
Command carried out an operation of sabotage against the Islamic State, which involved hacking servers
located in Germany.

3E.g., mandating the compliance to specific security standards of security

4Designing and enforcing regulations, having into account the variety of industries, can be expensive and
can have unexpected effects, such as discourage research (Harrington and Morgenstern, 2007).
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The security problems described before relate more with bad incentives, rather than

traditional information security (Anderson, 2001). In this research we investigate how to

improve the security of critical infrastructures, specifically, by analyzing the impact of

economic policies in the security of these systems. We find that economic policies can affect

the security of systems in many ways. First, we learnt that parties involved in the protection

of systems can leverage the anonymity of attacks to profit by sponsoring attacks. Nevertheless,

an appropriate design of the protection policies can prevent such situations. Second, we find

that the structure of power markets can affect both attackers and defenders. In particular,

although we can increase the difficulty to implement attacks, it becomes more difficult to

detect and penalize them. Third, we find that uncertainties about the security of the system

change the investments in protection. For example, uncertainties make insurance more

attractive; however, the defender accepts insurance with cost lower than the fair premium.

Also, insurance with subsidies and full coverage can create perverse incentives that reduce

investments in security.

The document is organized as follows: we give some background on cyber risks in CPS in

Chapter 2. Chapter 3 illustrates the importance of economic incentives showing how policies

designed to protect systems can introduce perverse incentives, which have the opposite effect.

In Chapter 4 we analyze attacks on the power grid that use the market’s infrastructure

to manipulate the demand of users. In Chapter 5 we investigate the optimal allocation

of resources to protect systems against cyber threats that evolve in time. We model the

evolution of threats with a Markov process that describes the dynamic interaction between

an attacker and a defender. In Chapter 6 we extend the model introduced in Chapter 5 to

contemplate cyber insurance as an investment to manage risks. We conclude the document

in Chapter 7.

3



www.manaraa.com

CHAPTER 2

BACKGROUND

2.1 Cyber Risks: Heritage from Modernity

In general, a cyber risk includes anything that causes harm exploiting vulnerabilities of

information systems. Cyber incidents usually involve damage to information; however, in

recent years some sophisticated attacks have surpassed cybernetic barriers affecting the

physical world. In this section we introduce cyber risks on information systems and critical

infrastructures and their relations with other risks.

2.1.1 Cyber Risks

Cyber threats emerged as byproducts of technological developments, since pressure to

commercialize products quickly (and some public policies1) led to insecure systems that

expose the confidentiality, integrity, or availability of information2 (Anderson, 2001). Most of

the attackers seek financial benefits through criminal activities, such as stealing information

(Karpesky Lab, 2014), or extorting individuals either by encrypting their data (ransomware)

(Smith, 2017) or by disabling their web services through DoS attacks (Krebs, 2016) (see

Fig. 2.1). Other attackers pursue political interests, such as hacktivism, espionage, sabotage,

terrorism, or war3 (Koppel, 2016). Although other threats proceed from unintentional

mistakes, (Ponemon Institute, 2016) confirms the intuition that malicious attacks have larger

cost than system glitches and human errors.

Cyber crime has thrived because it is a profitable activity with relatively low risk (attackers

usually remain anonymous or reside in countries where they cannot be prosecuted) (Greene,

2006). Also, it is easy to attack multiple targets simultaneously and the attackers do not need

advanced knowledge, in part because they can find information and tools in hacker forums

1Jim Gettys explains in (Gettys, 2018) that despite the concerns on security, many systems remained
unprotected on purpose to avoid export regulations imposed around cryptography. These regulations restricted
the export of cryptographic technologies and devices due to their military value. Hence, incorporating strong
cryptographic authentication in systems would impede their distribution.

2A survey on different industries (Ponemon Institute, 2016) found that most data breaches occur due to
malware, criminal insiders, social engineering, and SQL injection.

3 War and terrorism are acts of violence that can use the same methods; however, they have some
differences. A war is a conflict between nation-states, while terrorism is a political act that targets civilians
to inflict terror and compel governments to meet some demands.

4



www.manaraa.com

Cyber risks

Threats

Criminal

Steal information
Extortion

Political
Hacktivism
Sabotage/Espionage
Terrorism
War

Human errors

Catalysts
Profitability

Low risk
Availability of Tools

Information

Figure 2.1: Characteristics of cyber risks.

(Ablon et al., 2014; Karpesky Lab, 2014). As a consequence, in recent years the number of

information breaches has increased, as well as the number of records compromised in each

breach (Latham & Watkins, 2014).

Some consequences of security breaches (for individuals) are identity theft and credit/debit

card frauds. Besides, firms can suffer both well-known direct costs and long term and uncertain

intangible costs. Among direct costs we find technical investigations and and identity recover.

On the other hand, the biggest concern for firms comes from intangible costs, such as

revenue losses, long-term cost of loosing customers, and devaluation of the firm’s brand name

(Ponemon Institute, 2016; Verizon, 2017). According to (Mossburg et al., 2016), more than

90% of the total costs come from intangible factors.

2.1.2 Cyber Risks of Critical Infrastructures

In the last few years we have witnessed the development of sophisticated attacks that target

critical infrastructures. Stuxnet is the first known case of a computer worm designed to harm

a physical process. Stuxnet sabotaged centrifuges at the Natanz uranium enrichment plant

in Iran in 2010. It manipulated valves to increase the pressure of centrifuges, damaging these

devices and spoiling the enrichment process. The attack surprises by its subtlety, because it

deceived the operators making them believe that the process was operating normally (Zetter,

2014). Four years later, a second cyber attack disrupted the control systems of a steel mill

in Germany (Zetter, 2015). This attack prevented the proper shut down of a blast furnace,

causing massive damage to the system.

In 2015, the first confirmed attack on a power grid was launched on the electricity system

of Ukraine (Zetter, 2016). The aggressors launched a sophisticated attack using the operator’s
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workstations to open breakers and interrupt the power flow of around sixty substations.

They also overwrote the firmware of control devices, leaving them unresponsive to remote

commands. On top of that, the attack was designed to delay the report of incidents and to

impede remote actions of operators. In 2017, a group of hackers targeted nuclear facilities

from the Wolf Creek Nuclear Corporation in the U.S. (Perlroth, 2017). Although the attackers

didn’t cause harm in the system (they seemed interested in collecting intelligence about

nuclear facilities), damage in the system could cause explosions, fires, and spills of dangerous

material.

2.1.3 Characteristics of Attacks on CPS

The threats to critical infrastructures affect both information and hardware components.

Hence, hazardous events can lead not only to information leaks, but also to large scale

disasters. Attacks on the power grid can have devastating consequences due to the universal

dependence on the electricity system. Besides, recovering from an attack on the power grid can

take months, because some parts of the infrastructure are not easily replaced. For example,

voltage overloads can cause damage to large transformers, which are neither interchangeable

nor kept in backup inventories.4 According to (Koppel, 2016), produce, deliver, and replace

one of these transformers would take around two years.

The Cambridge centre for risk studies has studied the potential effects of terrorist attacks

on the power systems from the U.S. (Cambridge Centre for Risk Studies, 2015) and the U.K.

(Kelly et al., 2016), considering damage generators and substations, respectively. The studies

concluded that such attacks would cause total losses from $243 bn to $1 trn in the U.S. and

$15 bn to $110 bn in the U.K.5 The estimated cost of these attacks is comparable with some

of the most devastating natural disasters to date, such as Hurricane Katrina, which caused

losses of $172bn (Swiss Re, 2017)

2.1.4 Relation with Other Risks

Cyber risks share the following properties with the risk of terrorism (see Fig. 2.2 and Table 2.1):

� The events are caused by an intelligent adversary, rather than by change or by acts

of the nature. The main challenge is that intentional actions can damage important

components, while natural events are random.

4Each transformer has particular specifications and can cost between $3 and $10 million.

5The losses include the potential impact on other industries affected by blackouts.
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Risk on CPS

� Adversaries are intelligent and
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goals

� Threats evolve in time

� Events can affect more peo-
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� Damage is not immediate but
surpasses geographical bound-
aries

Figure 2.2: Characteristics of cyber risk on CPS.

� The attack techniques evolve to circumvent countermeasures of defenders.

� The risk is difficult to predict and control, it does not have geographical boundaries,

and can affect multiple industries. Consequently, a vulnerability can allow attacks at a

global scale, such as the Petya ransomware attack (Smith, 2017).

� The responsible for the attacks can remain anonymous or out of reach of the authorities.6

Hence, the government cannot use retaliation as a mechanism to prevent attacks

(Petersen, 2008).

� The events can have aggregate risk (correlated risk).7 For instance, an event such as the

9/11 can raise claims of business interruption, property damage, workers compensation,

and life and health insurance simultaneously.

We can find differences between cyber risks and other risks. On one hand, unlike terrorist

attacks or natural disasters, cyber attacks don’t cause large immediate physical damage,

although a cyber attack can comprise a larger area affecting much more people (Koppel,

2016). The greatest concern is that an cyber attack can disable critical infrastructures, for

6According to (Risk Management Solutions, Inc. and Centre for Risk Studies, University of Cambridge,
2016): “Conviction rates for cyber criminals are much lower than for many other criminals.”

7 Despite the consensus on the importance of correlation in cyber risks, some studies have found low
correlation in cyber events (Biener et al., 2015). Furthermore, (Eling and Wirfs, 2016) reports that costs are
higher when only one firm is involved.
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long periods of time. On the other hand, (Eling and Wirfs, 2016) finds that cyber risks have

both frequent and infrequent events, unlike other threats, such as terrorism. Frequent events

with low cost (e.g., DoS attacks and data breaches) are referred as short tail risk. Events

with low frequency and high cost (e.g., a blackout in the power grid) are referred as long tail

risks or extreme events.

Some studies have found that events affecting physical and information assets have

comparable costs. For instance, the survey in (Ponemon Institute, 2015) found that the

maximum losses on physical and information assets are almost the same. However, damage

on information assets causes roughly twice the cost on business than damage on physical

assets. On the other hand, (Eling and Wirfs, 2016) finds that cyber risks have a lower tail

and cause lower losses than other operational risks. In particular, the calculated VaR for

non-cyber risks is more than twice the VaR for cyber risks.

2.1.5 Why CPSs Remain Unprotected?

Despite of their importance, critical infrastructures suffer a disturbing lack of security. In

particular, a survey on the security of critical infrastructures around the world (Ponemon

Institute, 2014) found that most companies suffered a data breach in the last 12 months.8

Moreover, few companies consider protection (e.g., risk reduction) as one of the main

objectives. For instance, in (Ponemon Institute, 2014) most of the companies interviewed

(55%) have only one person assigned to security and in few cases (16%) they are aware of

the vulnerabilities of the ICS/SCADA. Furthermore, most of the respondents consider that

their company is unlikely to update their legacy devices to the next security state. Below we

expose some reasons for the low protection of critical infrastructures.

1. Cyber risks are difficult to estimate and evolve in time. Hence, companies that use risk

management approaches either disregard the risk (believing that they won’t raise the

interest of attackers) or accept it, when the cost protecting the system seems larger

than the potential consequences (Langner and Pederson, 2013). In both cases the firms

do not invest in security.

2. CPS, unlike other IT systems, are not flexible enough to allow the incorporation

protection schemes in short periods of time (e.g., days or weeks). Hence, dealing

8The survey lists among the targets of the attacks databases, personal devices (e.g., personal computers
and smart phones), servers, industrial control systems, and SCADA, among others.
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with evolving threats constitute a major difficulty, therefore, anticipating potential

vulnerabilities before they raise becomes crucial to protect CPS (Langner and Pederson,

2013).

3. Lack of (or bad) incentives also affect the protection of systems. In particular, Langner

and Pederson mention that “... risk management is not a technical approach but a

business...” (Langner and Pederson, 2013). Hence, firms and/or technology providers can

reduce investments in cyber security to increase their profits.9 For example, managers

with pressure to meet earning benchmarks can reduce the expenditures associated with

safety (Caskey and Ozel, 2017).

4. Some firms believe that the traditional insurance covers cyber risks; however, the

traditional insurance specializes in risks of tangible property, which excludes the risk

from cyber threats. Disagreements in the interpretation of insurance policies concerning

cyber incidents have led to legal disputes settled in court rooms. In particular, (Latham

& Watkins, 2014) shows some examples of lawsuits where the court support insurers

who refuse to cover losses caused by information breaches (Romanosky et al., 2017).

9Many companies can regard investments in security as expenses, since the society bears most of the losses
arising from attacks.
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Table 2.1: Characteristics of risks.

Natural
Disasters

Capital
Markets

Terrorism
Cyber risks

IT CPS

Threat

Source
Nature

(random)
Market forces

(random)
Intelligent adversary

Motive Accidental Political
Criminal
Political

Accidental

Political
Accidental

Scope

Spatial
Geographical

area
Market

Geographical
location

Information
systems

Physical
systems

Insurance

Type Standard Unavailable
Backed by
government

Limited
coverage

Limited
coverage
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CHAPTER 3

PERVERSE INCENTIVES IN SECURITY CONTRACTS: A CASE STUDY

IN THE COLOMBIAN POWER GRID

3.1 Introduction

In the last four decades, Colombia suffered one of the longest periods of sustained inter-

nal conflict. During this period, guerrilla groups targeted most of the country’s critical

infrastructures as part of their political and economic agenda. In particular, the electricity

infrastructure has been one of the main targets. According to data compiled by the National

Memorial Institute for the Prevention of Terrorism, between 1994 and 2004 67% of the global

attacks to electricity infrastructures occurred in Colombia, while other countries accounted

for less than 7% each (Zimmerman et al., 2005).

Fig. 3.1 shows the total number of attacks in Colombia during the last years.1 The

number of attacks decreased presumably thanks to the strengthening of the military forces

and anti-terrorism policies. Furthermore, electric companies also developed strategies to cope

with attacks, that is, reduce the duration of service interruptions. In particular, electric

companies gained expertise repairing transmission towers, which allowed them to reduce the

number of pending repairs (see Fig. 3.1). For instance, reparations took around 13 days in

2004, while in 2009 they took 6 days in average. Moreover, the companies can reestablish the

service installing provisional towers until they finish repairs.

The experience of public and private sectors operating such critical infrastructures under

constant attacks can provide insights to protect other systems. In this case, we analyze

a real scenario that illustrates how economic incentives can deteriorate the operation of

the power grid. In particular, authorities discovered that Electroservicios (a contractor in

charge of repairing transmission towers damaged by guerrilla attacks) colluded with guerrilla

groups to destroy electricity towers. Electroservicios paid guerrilla members $8 million pesos

(approximately $4K USD2) to bring down transmission towers, and ISA (a transmission

company in Colombia) would pay Electroservicios $150 million pesos (approximately $75K

USD) to repair each tower. As a result, the guerrilla militants attacked approximately 215

1This work uses data extracted from annual reports of an electricity company (Interconexión Eléctrica
S.A. E.S.P. (ISA), 2018) and news reports (Semana, 2008; Caracol radio, 2009).

2The exchange rates are from 2008.
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Figure 3.1: Number of attacks and pending repairs of transmission towers in Colombia during
1999-2015.

electric towers between 2005 and 2008 in the region where Electroservicios operated (Semana,

2008; Caracol radio, 2009).

We believe that the lessons learned from this experience can help to protect other systems

in similar scenarios. For example, (Krebs, 2017) reported that a DoS protection company

carried out attacks on Minecraft servers (using the Mirai botnet) to push sales of its services.

Such attacks can succeed because cyber attacks are even harder to attribute than the physical

attacks discussed here.

This chapter is organized as follows. Section 3.2 describes the contract scheme used to

award repair contracts and how contractors could exploit them to profit. In Section 3.3 we

show changes in contracts that can reduce the incentives of contractors to commit fraud.

We illustrate the efficacy of the new contracts with a numerical example in Section 3.4. In

Section 3.5 we analyze the incentives that other parties, e.g., local workers, have to attack

the system and how to mitigate them. We summarize and comment future directions in

Section 3.6.
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3.2 Background

In this section we construct a model of typical contractual policies; later we introduce

the fraud carried out by Electroservicios and show how collusion with guerrillas affect the

contractual policies.

3.2.1 Model of Lawful Contractors

Due the large volume of attacks, transmission companies in Colombia had to hire third parties

to repair transmission towers (see Fig. 3.1).3 According to the Colombian contracting code

of public administrations (Congreso de Colombia, 1993, 2013), public biddings must follow

reverse auctions.4 In a reverse auction the transmission company wants to buy a service

(tower repair) and multiple sellers (who must satisfy the contract specifications) offer bids

on the contract (e.g., repair costs) and the seller with the lower bid wins the contract. The

reverse auction can have many stages in which bidders make offers using closed envelopes.

The bids at each stage start at the lowest bid offered in the previous stage; thus, the sellers

compete reducing their bids.

Here we assume that N contractors bid for the contract, where the ith contractor offers

repair services with a cost ci ≥ 0 and obtains a profit Ui ≥ 0, with i = 1, . . . , N . According

to the reverse auction mechanism the contractor with the lowest bid wins the contract;

therefore, the transmission company has to pay p = cmin (per tower repaired), where

cmin = mini∈{1,...,N} ci. Without loss of generality we can assume that c1 ≤ c2 ≤ · · · ≤ cN ,

hence, p = cmin = c1.
5

With each attack the transmission company deals with repairs and additional operational

costs caused by the interruption of the electricity flow to regions that the transmission

company must serve. Although the Colombian regulations do not penalize failures to deliver

electricity caused by terrorist attacks, transmission companies still must purchase more

3 In the original setting, the transmission company designated a single contractor to repair the towers in a
given region.

4Auctions are mechanisms that allow a seller to elicit the private information from buyers and assign a
good to the buyer willing to pay the largest quantity (Nisan et al., 2007). A reverse auction follows the same
principle, but inverting the roles of the parties.

5The repair cost isn’t always the same, because it depends on the damage to the towers. For simplicity we
assume that terrorist attacks cause the maximum damage to the towers.
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expensive sources of electricity (if available), such as carbon-based fuels.6 We generalize the

additional operational costs arising from attacks with the parameter o ≥ 0.

In summary, with honest contractors the transmission company pays p = c1 to repair

each tower. Therefore, the cost of θ attacks for the transmission company is

θ(p+ o) (3.1)

and the benefit for the contractor is

θU1.

3.2.2 Fraud in Repair Contracts

In 2007 public authorities started investigations because 93% of all attacks in the country

took place in the same region, called Cauca (see Fig. 3.2). The inquiries revealed that the

attacks had the following characteristics:

� All towers belonged to the same transmission company (ISA).

� The attackers’ modus operandi was the same (e.g., they deployed the explosives in the

same place).

� The same contractor repaired all the towers in the region called Cauca.

Repair costs per tower ranged from $50 to $150 million pesos (25K − 75K USD). The

estimated loses for ISA (the electricity transmission company) were approximately $16K

million pesos (around $8 million dollars at the time).

In 2008 the authorities infiltrated the contractor and obtained a confession from one of

the executives. They found out that the contractor’s business boomed since 2005 thanks to

sponsored attacks. The contractor did not attack the electric towers directly, instead, they

hired four guerrilla militants and paid each one of them $2 million pesos (around 1K USD).

The contractor used the following criteria to implement the attacks:

� They chose towers with easy access to facilitate the escape of militants and the arrival

of contractors, so they could arrive fast to the site of the repair,

6More than 70% of the electricity in Colombia is generated by hydropower, and when attacks limit
the transmission of this type of energy, the transmission company needs to satisfy the demand with more
expensive carbon-based power.

14



www.manaraa.com

2000 2002 2004 2006 2008 2010 2012 2014
Year

0

50

100

150

200

At
ta
ck
s 
on

 To
w
er
s

Start of
 fraud Discovery

Attacks on Main Affected Regions
ANTIOQUIA
CAUCA** (Region of fraud)
NORTE DE SANTANDER

Figure 3.2: Number of attacks from 1999 to 2015 in the three regions with more attacks in
Colombia.

� The guerrilla militants had instructions to partially damaged the towers to allow both

cheap and fast repairs.

� The militants carried out the attacks only on weekdays, so that the contractor avoided

paying overtime its employees.

Thanks to the careful planning of attacks the contractor increased its profits with each repair.

3.2.3 Modeling the Electroservicios Case

Here a contractor sees the opportunity to hire militants to commit attacks on specific towers

and increase the frequency of their repair services. Let θ̃i ∈ Z∗ be the number of attacks

sponsored by the ith contractor and b(θ̃i) be the bribe or cost to launch θ̃i attacks. We

assume that the bribe b(·) increases with the number the attacks because 1) the capture

risk increases with the frequency of the attacks (e.g., the military forces would increase the

frequency of patrols) and 2) the militant’s opportunity cost (e.g., guerrillas carry out other

activities and they can ask higher compensations to spend more time and resources attacking

electric towers). Hence, we define the bribe as convex function b : Z∗ → R+.

Let use assume that, if a contractor i charges ci to repair a tower damaged with a

sponsored attack, its profit is Ũi. Since carefully planned (sponsored) attacks reduce the
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repair expenses, the contractor will earn a larger profit sponsoring attacks, that is, Ũi ≥ Ui.
7

Let us denote the excess benefit with sponsored attacks as Li = Ũi − Ui.
We now parameterize the way in which a contractor can change its bids if he can sponsor

attacks. In particular, a contractor can use the additional benefit from sponsored attacks,

Li, to lower its bid and become more competitive, that is, increase the chances to win the

contract. For example, if a contractor decides to accept a lower benefit (per tower) Ũi − γLi
instead of Ũi, with γ ∈ [0, 1], then it can charge ci − γLi to repair towers damaged through

sponsored attacks. However, the bid offered to the transmission company must account

for both legitimate and sponsored attacks. Hence, if the contractor sponsors θ̃i attacks, its

modified bid, denoted c̃i, must satisfy

θci + θ̃i(ci − γLi) = (θ + θ̃i)c̃i (3.2)

The left hand side of Eq. 3.2 shows the payments required to repair θ legitimate attacks and

θ̃i sponsored attacks. From the previous expression we have

c̃i = ci −
θ̃i

θ + θ̃i
γLi ≥ ci − γLi.

Observe that the new bid c̃i decreases with γ and the number of sponsored attacks, i.e.,

ci ≥ c̃i. Moreover, the contractor reaches the minimum bid c̃i = ci − γLi when θ̃i is much

larger than θ.

In addition, the profit of the contractor that sponsors θ̃i attacks becomes

θUi + θ̃i(Ũi − γLi)− b(θ̃i). (3.3)

Thus, if γ = 0 the contractor does not offer reduced bids, and its benefit per sponsored attack

is Ũi. On the other hand, if γ = 1, then the contractor accepts the typical benefit Ui (instead

of Ũi) and reduces its bid to the lowest value. The optimal number of attacks, denoted by θ̃vi ,

solves the following maximization problem

maximize
θ̃i

θUi + θ̃i(Ũi − γLi)− b(θ̃i)

subject to θ̃i ∈ Z∗.
(3.4)

7In practice, the transmission company can inspect the damage on each tower to adjust the payment
p. However, here we assume the worst case in which the transmission company makes the same payment
independently of the type of attack (legitimate or sponsored).
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Observe that a contractor would sponsor attacks when the profit with at least one attack

(θ̃i = 1) exceeds the cost, that is

Ũi − γLi > b(1).

From the case of Electroservicios we know that the profit from attacks is much larger than

the cost. For this reason, it is necessary to redesign the contracts to avoid incentives of

contractors to increase the number of attacks.

Example 1 (Optimal Number of Attacks). Let us define the cost of one attack as b(1) = b0+λ,

where b0, λ ≥ 0. We assume that the bribe b(·) increases with the number of attacks, in

particular, we define the cost of a second attack as b(2)− b(1) = b0 + λ(1 + α), with α > 0.

In this case, the second attack costs λα more than a single attack. Using the previous

considerations we define the cost of the kth attack as

b(k)− b(k − 1) = b0 + λk,

where b0 is a fixed cost and λk is a variable cost defined with the recursion λk = λk−1(1 + α),

where λ1 = λ. Now we can define the total bribe for θ̃i attacks with the following function:

b(θ̃i) =

θ̃i∑
j=1

(b0 + λj) = θ̃ib0 +λ+λ(1 +α) + · · ·+λ(1 +α)θ̃i−1 = θ̃ib0 +λ
(1 + α)θ̃i − 1

α
(3.5)

The right hand side equality follows because
∑

j λj is a geometric series. Since α > 0, then

b(θ̃i) is a strictly increasing convex function, as required by our assumptions.

We can use Eq. (3.5) to find the optimal number of sponsored attacks θ̃vi that solves the

optimization problem in Eq. (3.4). Since b(θ̃i) is convex, then the objective function in Eq.

(3.4) is a concave function, and the solution satisfies the following First Order Condition

(FOC):

∂

∂θ̃i

(
θ̃i(Ũi − γLi)− b(θ̃i)

)∣∣∣∣
θ̃i=θ̃vi

= 0.

Solving the previous equation we have

θ̃vi = ln

(
α(Ũi − γLi − b0)
λ ln(1 + α)

)/
ln(1 + α) (3.6)
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3.3 Designing Contracts to Disincentivize Attacks by Contractors

The transmission company would prevent attacks reducing asymmetries in information that

allow frauds; for example, Yardstick competition helps identifying anomalous behaviors by

comparing the costs of similar firms (Shleifer, 1985). This mechanism can help to identify

contractors who bid much lower; however, a malicious contractor aware of the regulation

can offer bids consistent with the bids in other markets. Here we discuss a contract scheme

designed to reduce incentives to sponsor attacks in the power system infrastructure. The

model is based on how the transmission company of Colombia changed the contractual

policies after the case of Electroservicios came to light.

3.3.1 Contractor Side

The basic idea of the new contract structure consists in selecting n contractors and assign

them specific repairs randomly.8 In this way, contractors that sponsor attacks cannot know

if they will repair the attacked towers, which give them additional profit.9 In this case the

transmission company uses an auction to select n contractors with the lowest bids. With the

new contract the expected profit of contractors that sponsor θ̃i attacks becomes

θUi + θ̃i(Ũi − γLi)
n

− b(θ̃i). (3.7)

Thus, the optimal number of sponsored attacks with the new contract, denoted by θ̃mi (n),

depends on the number of contractors n and solves the following maximization problem:

maximize
θ̃i

θUi + θ̃i(Ũi − γLi)
n

− b(θ̃i)

subject to θ̃i ∈ Z∗.
(3.8)

Observe that the new contract scheme with n > 1 reduces the number of sponsored attacks

(θ̃vi ≥ θ̃mi (n)), because the expected benefits of contractors decrease with respect to n. For

instance, with n = 2 the contractor’s benefits decrease more than a half. The reduction in

benefits will be greater for small values of n, and less significant as n increases.

8The contractors can incur in additional costs if they have to repair towers in many regions, rather than a
single one.

9The new contracts would fail if a large set of contractors collude in attacks, but as far as we are aware,
that level of corruption hasn’t been encountered in Colombia.
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Since the objective function in Eq. (3.8) is concave, the optimal number of attacks θ̃mi
satisfies the following FOC:

∂

∂θ̃i

(
θ̃i
n

(Ũi − γLi)− b(θ̃i)
)∣∣∣∣∣

θ̃i=θ̃mi

= 0. (3.9)

The electricity transmission company can prevent sponsored attacks selecting n large

enough to guarantee that the cost of (at least) one attack exceeds the expected profit of the

contractors, that is,
Ũi − γLi

n
< b(1). (3.10)

3.3.2 Utility Side

Selecting n contractors (instead of just one with the lowest bid) increases the costs for the

electric transmission company. In particular, the payment for individual repairs is larger in

this second contract because it must cover the repair expenses of all the selected contractors.10

Therefore, we define the payment as p̂ = cn (we assume that the contractors report truthfully

their bids). Furthermore, the transmission company must pay also the expenses of moving

personnel and equipment to the tower. Such expenses will depend on the location of both the

company and the attack. For simplicity, let us assume that the transmission expenses ct are

constant for all the contractors. Thus, the repair payment in the new contract is equal to

p̂ = cn + ct.

Hence, the additional cost with respect to the original contract is

pr(n) = p̂− p = cn − c1 + ct.

Thus, the expected cost for the transmission company becomes

(θ + θ̃mi (n))(p+ pr(n) + o). (3.11)

The transmission company would choose n companies to make attacks unprofitable with

minimum expenses. We express the problem of selecting the number contractors as

minimize
n

(θ + θ̃mi (n))(p+ pr(n) + o)

subject to n ≥ 1,

Eq. (3.10).

10 The new contract can also increase the repair times, but we do not contemplate that cost here because the
transmission company does not pay penalties for service interruptions caused by terrorist attacks. However,
users suffer higher losses if the repair times increase.
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We include Eq. (3.10) as a restriction to guarantee that n is large enough to avoid attacks;

this occurs when public policies decree zero tolerance with terrorist actions. However, without

such restriction the transmission company can decide whether to implement the new contract

evaluating its expected cost. In particular, in some cases it can be cheaper to allow attacks,

that is, when the cost of with the original contract is lower than the cost with the new

mechanism

(θ + θ̃vi )(p+ o) < (θ + θ̃mi (n))(p+ pr(n) + o).

If n satisfies the Eq. (3.10) then we have

θ̃vi (p+ o) < θ(cn − c1 + ct)

If the bids of contractors are close (i.e., cn − c1 ≈ 0), then the transmission expenses ct

and the number of legitimate attacks θ will determine the convenience of the mechanism.

3.4 Numerical Example

3.4.1 Estimation of Parameters

Since we do not have enough information to estimate all the parameters of the model, we

extract some parameters from news reports and make further assumptions to give values to

other parameters of the model.

The news report by Caracol (Caracol radio, 2009) mentions that approximately 215 attacks

on energy towers were sponsored in 3 years. The report mentions that the transmission

company paid around $150 million pesos ($83, 333 USD) to repair each tower (labor costs are

less expensive in Colombia than in the US or Europe). Hence we assume that the cost to

repair a tower that suffers a legitimate attack is

c1 = p = $83, 333,

where c1 includes both net repair expenses E1 and the expected benefit U1, such that

c1 = E1 + U1.

If we assume a rate of return of 10%, then the contractor expects a benefit U1 = 0.1E1 from

an investment of capital E1. Therefore, the repair cost is c1 = 11U1. Hence, we estimate that

the benefit of the contractor with legitimate attacks is

U1 = c1/11 ≈ $7, 576.
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On the other hand, we assume that careful attacks can lower the damage of the towers.

The report in (Semana, 2008) mentions that the minimum repair payment was $50 million

pesos ($27, 778 USD). Hence, we assume that sponsored attacks reduce the repair costs to

the minimum. If we denote the minimum repair cost as c1 = 27, 778, then the benefit is

U1 = c1
/

11 ≈ $2, 525 and the minimum expenses are E = $25, 253. Moreover, we consider

that the transmission company does not know the exact damage of the tower, then it will

make the usual payment p, leaving the contractor with a benefit per tower of

Ũ1 = p− E = $58, 081.

Here the benefit with sponsored attacks Ũ1 is more than seven times the benefit received by

contractors when they repair electric towers with “regular” (i.e. not sponsored) attacks.

Now, let us define the bribe required to attack one tower as b(1) = $4, 444 (recall that

the attacks were made by 4 militants, whose fee was $1, 111 USD). Let us assume that

b(1) = b0 + λ, with a variable cost equal to the 20% of the constant cost, that is, λ = 0.2b0.

Consequently, b(1) = 1.2b0 and b0 = $3, 704. If we assume that the number of sponsored

attacks was optimal, then we can estimate the average number of attacks during one year as

θ̃vi = 215/3 ≈ 72. Besides, in a competitive auction the contractor would have to reduce its

bid the most it can to increase its chances to get the contract. Hence, we can assume that

γ = 1. Moreover, the only parameter that remains is α, which can be estimated from Eq.

(3.6) as α = 0.0234. Finally, we assume that the transmission cost ct and operational losses o

are equal to zero.

3.4.2 Number of Sponsored Attacks

We are interested in observing the optimal number of attacks with each contract. Fig. 3.3

shows that (in the initial contract) the number of attacks θ̃vi (see Eq. (3.6)) increases as γ

decreases. This happens because with small γ the contractor has more benefits per tower,

and thus, more incentives to attack. However, getting more benefits per tower can prevent

them from offering a competing bid in the first place, so this is something the attacker needs

to balance when submitting the bids.

We now investigate changes in the number of attacks with the modified contracts, designed

to reduce the perverse incentives of contractors. Solving Eq. (3.9) we have that optimal

number of attacks θ̃mi (n) in the new contract is

θ̃mi (n) =
1

k3
(ln k1 + ln (ln(k2 − b0n)− lnn)) , (3.12)
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Figure 3.3: Number of attacks as a function of the bid reduction determined by γ.
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Figure 3.4: Number of attacks as a function of the number of companies n.

were k1 = α/λ ln(1 + α), k2 = Ũi − γLi, and k3 = ln(1 + α).

Fig. 3.4 shows the optimal number of attacks θ̃mi (n) in a contract with the proposed

mechanism (see Eq. (3.12)). In this case we assume that γ = 0, which results in the best

scenario for the contractor. In this experiment the number of attacks is greater than one if

n ≤ 13.
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Figure 3.5: Profit of a contractor that sponsors attacks in contracts with either 1 or 14
contractors. The inclusion of more contractors decreases the optimal number of attacks.

3.4.3 Profit of the Parties

Fig. 3.5 shows the maximum profit of a contractor (i.e., profit when γ = 0) as a function

of the number of attacks θ̃i in both the original contract and the new contract designed to

prevent perverse incentives (see Eqs. (3.3) and (3.7), respectively). The number of attacks

that maximizes the contractor’s profit in the original contract (or a contract with n = 1)

is θ̃vi = 186. However, if the transmission company implements a contract with n = 14

contractors, then the optimal number of attacks becomes θ̃mi = 0. Thus, random selection of

contractors reduces the incentives for sponsored attacks.

Fig. 3.6 shows the cost for the transmission company (see Eqs. (3.1) and (3.11)) as a

function of the number of contractors n. We show an example in which the new contract is

not convenient because raises the costs of repairs. In particular, if pr(n) = 30p, then the cost

for the transmission company is higher with the new contract.

3.5 Worker’s Incentives to Sponsor Attacks

The contractors often hire non-specialized workforce from the region of the accident to reduce

costs. A concern is that these workers would demolish the towers to be hired. In particular,

individuals who are unemployed or have a low salary profit by sponsoring attacks. In this

section we analyze the conditions in which workers can sponsor attacks and how to make

these attacks unprofitable.
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Figure 3.6: Cost for the transmission company as a function of the number of contractors n.

3.5.1 Incentives of Workers

Let us consider the conditions that make attacks profitable for a single worker. Let S be the

salary paid by the repair company, Smin the minimum salary (either the salary of its current

job or the minimum salary accepted), and τ the time that takes to repair a tower. We assume

that repairing towers give a higher compensation, i.e., S ≥ Smin, because repairing towers is

a risky activity. Specifically, workers are exposed to bombs hidden close to the towers and

they can be kidnapped by the guerrilla groups (El Tiempo, 2000).

Thus, sponsoring attacks on θi towers is profitable if the profit with an attack is higher

than its cost. We can express this condition as

(S − Smin)τθi > b(θi) (3.13)

This can be rewritten as

S − Smin ≥
b(θi)

τθi
.

From this expression we can see that longer repair periods increase the interest in sponsoring

attacks. We know that in the worst case repairs can take τ = 13 days. Consequently, at least

one attack is profitable if

S − Smin ≥
b(1)

13
= $341.85.

The minimum daily wage in Colombia during 2005 was Smin = $7.89. Hence, an individual

worker can sponsor an attack if his payment is around 40 times the minimal wage, which
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seems unlikely. On the other hand, if the company hires m workers, then the workers can

form coalitions to share the cost of sponsoring an attack. We can use Eq. (3.13) to find that

a profitable attacks satisfies

S − Smin ≥
b(θi)

mτθi
.

We know that, in the worst case, a tower requires 4 quadrilles (teams) to repair it. Each

quadrille is composed by 25 persons, of which 14 are specialists. Hence, we assume that

11 persons per quadrille can be hired from the local region. Consequently, we assume that

the company hires m = 44 local workers. With these parameters we calculate the minimum

salary that incentives at least one attack

S − Smin ≥
4444

44 · 13
= $7.77.

Note that in the worst case, unemployed workers have Smin = 0. Since contracts cannot offer

salaries lower than the minimal wage, then a coalition of workers in a region can get some

profit with one attack, because the minimal wage ($7.89) exceeds the minimum salary $7.77

required to sponsor an attack.

The transmission company would avoid attacks selecting the salary as S = Smin. However,

this approach fails because the workers can request higher compensation than the minimum

wage to repair the towers. Also, the transmission company can ignore Smin.

3.5.2 Incentives with Random Selection of Workers

Alternatively, we can think in a raffle to choose workers. Let us assume that the total number

of possible workers is M . If m workers plot an attack expecting to be hired by the company,

k workers of the coalition have the following probability of being hired:

B(M,m, k) =

(
m
k

)(
M−m
m−k

)(
M
m

) .

The expected number of selected workers from the coalition is less than m if M > m. That

is,

m̄ =
m∑
k=0

B(M,m, k)k < m.

Furthermore, m̄ decreases as M increases. Thus, the condition for a profitable attack becomes

S − Smin ≥
b(θi)

τθim̄
>
b(θi)

τθim
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Figure 3.7: Worker’s salary that allow them to sponsor attacks (as a function of the number
of available candidates M).

We can see that with a raffle is harder for the attackers to coordinate attacks, because the

repair salary must be higher than the case without raffles. Fig. 3.7 shows the salary S that

allows a coalition of m = 44 workers to get profit from attacks. Note that the minimum

salary to sponsor attacks increases by selecting workers randomly.

3.6 Conclusions

In this chapter we model a series of attacks that happened in the Colombian power system,

and the actions the electric transmission company took to minimize future contractors and

workers from launching similar attacks. This research has some limitations. On one hand, we

assume that only one contractor engages in fraud, that is, the bidders do not form coalitions.

However, in practice multiple contractors can associate to defraud the electric company. On

the other hand, we didn’t model trade off between the number of companies and the cost for

the electricity company. It can occur that it is convenient to allow attacks (at least some),

when having a large pool of contractors increases excessively the repair costs.

We believe that the strategic nature of attackers, defenders, and the ecosystem of industries

and other agents involved in the protection of large critical infrastructures in Colombia can

serve to find analogies for the protection of critical infrastructures against cyber attacks. For

example, an anti-DDoS service provider launched DDoS attacks on Minecraft servers (using

the Mirai botnet) force its owner to use its service (Krebs, 2017). Similar to the case studied

26



www.manaraa.com

in this chapter, to prevent these types of attacks companies can hire the services of multiple

anti-DDoS companies, who wouldn’t know in advance whether they will be hired to deal with

a particular incident.
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4.1 Introduction

The electricity market is an interesting target because it introduces economic incentives,

which extend the possible objectives of adversaries; for example, adversaries can attempt

to change the market’s equilibrium, rather than breaking the whole system. Furthermore,

successful attacks on the market can have as much impact as some physical attacks, because

the market affect the decisions of users, which ultimately affect the physical components of

the power grid.

Although we don’t have records of cybernetic attacks targeting markets, modern power

grids (called smart grids (SG)) introduce technologies that can extend the reach of attackers.

In particular, demand response (DR) programs use new technologies envisioned to coordinate

the demand of customers and improve the efficiency of the market. Unfortunately, such

technologies can become tools that allow the attackers to pursue more sophisticated enterprises.

In this work we analyze how DR programs can give attackers a new way to defraud the

electricity system without the risks of being identified. Specifically, by attacking the DR

signals sent by the DR system (as shown in Fig. 4.1), the attacker adds a layer of indirection

hindering his identification. For example, the attacker can instruct a subset of consumers V
(set of victims) to reduce their electricity consumption, which in turn will reduce the cost

of electricity. In this way, other users (from a set of attackers A) can benefit consuming

larger amounts of electricity at reduced prices. If the set A is large enough, then a forensic

analysis will reveal many suspects, who can claim plausible deniability, hindering the precise

identification of the culprit.

In this work we formulate the aforementioned problem, analyze ways to detect attacks

(i.e., detect that an attack is occurring, but not who is responsible for it), and propose ideas

to reduce economic incentives to defraud the system. We also show how a malicious attacker

can cause peaks in demand to cause blackouts.

We model a general scenario in which a central planner implements a DR scheme designed

to achieve efficient outcomes, that is, maximize the customer surplus. We model two

attackers that select their attack strategy in a principled way to achieve specific goals: 1)

maximize its profits and protect its identity, and 2) damage the system. We focus on two

previously proposed DR schemes with two general control approaches, namely centralized

and decentralized control. Our objective is to evaluate how centralized and decentralized

systems affect the implementation and detection of attacks.

We find that attackers can carry out successful attacks on both centralized and decen-

tralized systems. However, attacks on decentralized systems lead to less profit; furthermore,
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Figure 4.1: Adversary Model: by compromising DR signals, the attacker can affect the
behavior of a large sector of the population, and instruct them to behave in a manner
beneficial for the attacker (e.g., force them to reduce electricity consumption so the attacker
can get electricity at reduced rates).

information asymmetries of decentralized systems prejudice the detection of attacks (i.e.,

differentiate attacks from faults) and the estimation of penalties.

4.1.1 Literature Review

Here we investigate how false data injection attacks can affect electricity markets (Liu et al.,

2009). Previous works focus on the bulk electricity market (Liyan et al., 2012; Negrete-

Pincetic et al., 2009); however, it is more likely that attacks will happen in the retail market,

since it has more participants with highly varying levels of trustworthiness, which increases

the difficulty to attribute attacks. Thus, attackers will have higher incentives for attacking

retail markets than bulk-electricity markets.

On the other hand, (Tan et al., 2013) analyzed the impact of integrity attacks on the

retail DR market and showed attacks on price signals (scaling attacks and delay attacks) that

cause severe oscillations of the electricity demand. Our work departs from (Tan et al., 2013)

in several ways. On one hand, (Tan et al., 2013) modeled the market with a single-input

single-output linear system. Instead, we incorporate market interactions of a multi-agent

system where each agent has a nonlinear valuation of electricity, similar to (Roozbehani et al.,

2012, 2010; Huang et al., 2012; Samadi et al., 2011; Chen et al., 2010; Ibars et al., 2010;

Gellings, 2009; Fahrioglu and Alvarado, 1998; Li et al., 2011). Moreover, one contribution of

this work is to model a more powerful attacker that can select an arbitrary attack signal.

Our work is closely related to (Liu et al., 2016), which analyzes attacks on the retail

market that attempt to either reduce prices (benefiting the attacker) and create peaks in

demand. In addition, (Liu et al., 2016) proposes a detection scheme using partially observable

Markov decision processes. Our work departs from (Liu et al., 2016) in the following aspects.

30



www.manaraa.com

First, we consider attackers with specific objectives, which allows us to define precise attack

signals, rather than heuristic attacks. Second, the detection scheme in (Liu et al., 2016) relies

on historical data to estimate the security of the system. In contrast, we adopt a pessimistic

posture assuming that the utility does not have reliable data about previous attacks. Hence,

our detection mechanism only assumes knowledge of the normal demand of users.

In this work we extend our previous works (Barreto and Cárdenas, 2015a; Barreto et al.,

2014) formalizing the properties of the attack, the detection mechanism, and the penalties.

4.1.2 Outline

In Section 4.2 we introduce the market model of the electricity system and two DR schemes.

Section 4.3 introduces the goal of the attacker and the attack strategies for each DR scheme.

We introduce detection schemes and penalties for each DR system in Sections 4.4 and 4.5,

respectively. We summarize the main conclusions and comment future directions in Section 4.6.

4.2 Background: Market Models

We consider a market with three participants, namely users, generators, and a DR operator.

The users, P = {1, . . . , N}, consume qi ≥ 0 units of energy and obtain a benefit defined by

the function vi(qi), for i ∈ P . The system can have multiple generators who supply the total

demand of energy. Although the cost of producing energy depends on both the type of the

generator (e.g., thermal, hydroelectric, or nuclear) and the distribution losses, here we assume

that the cost depends only on the total demand. In particular, we consider that the function

C(g) determines the cost of producing g units of energy. Moreover, the DR operator manages

the market and coordinates the distribution of power to guarantee an equilibrium between

generation and demand. For simplicity, we ignore the losses of distribution, therefore, the

total generation equals the total demand, i.e., g =
∑

i∈P qi. The DR operator also chooses

the tariff of energy p charged to users.

In summary, we can express the surplus of the ith user as

Ui(qi, p) = vi(qi)− qip,

where the vector q = [q1, . . . , qN ] represents the demand of the population and ‖·‖ is the 1-

norm, i.e., ‖q‖ =
∑

i∈P qi. We make the following assumptions about the market’s parameters

Assumption 1. The valuation function vi : R≥0 → R is twice differentiable, strictly concave,

non-decreasing, and satisfies vi(0) = 0.

The cost function C : R≥0 → R≥0 is differentiable, strictly convex, and non-decreasing.
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The electricity tariff p and the behavior of users determine the equilibrium of the system.

In the traditional power grid, users cannot observe changes in prices, therefore, we assume

that they are non-strategic, that is, they do not consider the effect of their actions in the

prices. However, new technologies of the smart grids improve the information and decision

capabilities of users, so they can become strategic, in other words, they make decisions

anticipating their impact in the market.

The existence of natural monopolies in the electricity system compel price regulations to

guarantee efficiency in the system. Here we assume that the DR operator plays the role of a

regulator who chooses the price tariff p to protect users from monopolies. In particular, the

DR operator can use average cost prices, defined as

p(g) =
C(g)

g
,

which guarantee that payments by users cover the production costs, allowing fair return to

the generators (included in the cost function) (Laffont and Tirole, 1993).

4.2.1 Market with Strategic Users

Strategic users make decisions anticipating changes in the prices, which in turn depend on

the total demand. Therefore, the profit of strategic users becomes1

Ui (qi, ‖q‖) = vi(qi)− qip (‖q‖) , i ∈ P . (4.1)

Here we assume that users know the price function p(·) beforehand, hence, they only need to

observe the total demand in the system ‖q‖ to make decisions. In particular, rational agents

will choose the demand that maximizes their profit, therefore, they choose the demand qi to

solve the following optimization problem

maximize
qi

Ui (qi, ‖q‖)

subject to qi ≥ Qi,
(4.2)

Observe that the optimal demand of users changes when they become strategic and

this can produce inefficient outcomes, such as the tragedy of the commons (Barreto et al.,

2013; Hardin, 1968) or the price of anarchy (Papadimitriou, 2001). Hence, it is necessary to

coordinate the actions of users to improve the efficiency of the system. Below we introduce

mechanisms to prevent inefficient outcomes.

1Users only need the total demand, rather than the precise demand of all users. Therefore, users reveal
their consumption, which is private information, only to the utility company.
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4.2.2 Demand Response Schemes

With new technology we can aspire to improve the efficiency of the system, because users

become active participants in the market. DR schemes seek to coordinate the actions of

strategic users to reach the social optimal outcome, defined as the demand µ that maximizes

the customer surplus, therefore, µ solves

maximize
q

f(q) =
∑

i∈P
Ui(qi, ‖q‖)

subject to qi ≥ Qi, i ∈ P . (4.3a)

Assumption 2. We assume that in the optimal outcome all users have a positive demand

that satisfies µi > Qi for all i ∈ P.

The customer surplus is continuous, differentiable, and concave (see Assumption 1).

Furthermore, from Assumption 2, the constraint in Eq. (4.3a) is not binding, therefore, the

optimal solution µ satisfies the following (Boyd and Vandenberghe, 2004; Kuhn and Tucker,

1951; Karush, 1939)

∂

∂qi
f(q)

∣∣
q=µ

= v̇i(µi)− p (‖µ‖)− ‖µ‖ ṗ (‖µ‖) = 0, (4.4)

for all i ∈ P .

Below we consider two demand response models that lead to the optimal outcome (or

demand) µ in the equilibrium using centralized and decentralized approached, namely direct

load control and dynamic prices (Barreto et al., 2013; Vardakas et al., 2015).

Direct Load Control (DLC)

This approach consists in implementing a centralized control of the loads. In particular, users

reveal their private information (valuation function) and give control of their thermostats

and other devices to the utility, which in turn computes and applies the optimal demand (see

Fig. 4.2a). DLC can be implemented using the Vickrey-Clarke-Groves (VCG) mechanism,

which allocates resources maximizing the social interest, guaranteeing that users report

truthfully their private information (Vickrey, 1961; Clarke, 1971; Groves, 1973). The exact

implementation of DLC is out of scope in this work, because we are interested mainly in the

general characteristics of this approach. We refer the interested reader to the implementation

of DLC in (Vardakas et al., 2015).
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(a) Centralized DR system in which users reveal their pref-
erences to the utility, who computes the optimal demand
and send it to users.

Utility
Users

maxqi Ui(qi, ‖q‖) + I(qi, ‖q‖)
Incentives

I(·), ‖q‖

(b) Decentralized DR system that uses an incentive function
Ii(·) to align the objectives of users.

Figure 4.2: Demand response schemes.

Dynamic Prices (DP)

Dynamic pricing is a decentralized control approach (see Fig. 4.2b), which unlike DLC, allows

users to manage their consumption using the information provided by the utility (e.g., prices

or total demand). In this case we consider the DR scheme in (Barreto et al., 2013; Barreto

and Cárdenas, 2015b), which modifies the user’s profit function in Eq. (4.1) adding the

incentive function

Ii (q) =
∥∥q−i∥∥(p( N

N − 1

∥∥q−i∥∥)− p (‖q‖)
)
,

where
∥∥q−i∥∥ = ‖q‖ − qi is the total demand without including the ith user. The incentive

function charges fees to users with high demand and gives incentives to the users with low

demand. In this way the incentives internalize the burden caused by users to the system.

With the incentive I(·) the user’s optimization problem in Eq. (4.2) becomes

maximize
qi

Wi(qi, ||q||) = Ui(qi, ||q||) + I(qi, ‖q‖)

subject to qi ≥ Qi, i ∈ P ,

which has the same first order conditions (FOC) that the optimal solution Eq. (4.4), hence,

the dynamic prices scheme leads to the optimal outcome µ. As a drawback, this mech-

anism requires external subsidies, because the total amount of incentives is positive, i.e.,∑
i I(qi, ‖q‖) > 0.
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4.3 Adversary Model

In this section we analyze attacks that exploit the DR infrastructure to change the state

(demand) of the system. We consider two types of adversaries, a fraudster and a malicious

attacker. The fraudster is a user who attempts to profit from the attack, while the malicious

attacker is an external individual who tries to damage the system. We assume that both

attackers can control the signals sent by the DR system to the users (see Fig. 4.1). Hence,

with DLC the attacker modifies directly the demand of users, while with DP the attacker

modifies the incentives sent to users. Below we describe the objective of each attacker and

show that, although the attackers have different objectives, they can use the same techniques

to achieve their goals.

4.3.1 Fraudster Attacker

The objective of the fraudster consists in maximizing his profit while avoiding being identified.

We consider the following restrictions: 1) The attacker cannot modify his own electricity bill,

for instance, by hacking his smart meter to report less consumption.2 2) The attacker has

as much information as the DR operator. This means that, depending on the DR scheme,

the attacker can access either only the consumption (in DP) or the consumption and the

valuation function of users (in DLC).

Since the attacker cannot modify his bill directly, he can try to compromise the DR system

to force a favorable state. For example, the attacker can use the DR system, which originally

maximizes the customer surplus (see Eq. (4.3)), to maximize his own profit,3 that is,

maximize
q1,...,qN

Ui (qi, ‖q‖)

subject to qi ≥ Qi, i ∈ P .
(4.5)

A disadvantage of this attack lies in its risk, because once the attack is detected, the utility

can identify the perpetrator precisely, since only the fraudster profits from the attack. The

fraudster can reduce the risk of the attack implementing another attack that both protects

2The utility company knows the total energy distributed to the users and their reported consumption.
Therefore, imbalances between the generated energy and the reported consumed energy could lead to
investigations to trace the cause, revealing the identity of the attacker.

3 The individual optimization problem in Eq. (4.2) differs with the problem in Eq. (4.5) in its decision
variables. Specifically, in Eq. (4.2) the attacker controls only the his own demand qi, while in Eq. (4.5) the
attacker controls the demand of all users.
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his identity and allows him to benefit from the attack. Specifically, we consider attacks in

which the fraudster tries to conceal his identity sharing the benefits of the attack with other

users, preventing the precise identification of the culprit. Let us represent the fraudster’s

objective with the following optimization problem (which is solvable with the DR schemes

mentioned before (Barreto et al., 2014)):

maximize
q

fa(q) = λ
∑

i∈A
Ui(q) +

∑
j∈V

Uj(q)

subject to qi ≥ Qi, i ∈ P .
(4.6)

In this case the attacker’s objective function fa(·) partitions the population P in two sets, A
and V, and it provides benefits to the users in set A. For λ large enough, the DR system

will (for practical purposes) maximize the profit of users in the set A. In this way, we

consider multiple users who benefit from the attack— either because of attacker-coalitions or

because the fraudster shares benefits of the attack with other users in an attempt to remain

untraceable.4

For simplicity we make the following assumption that simplifies the characterization of

attacks.

Assumption 3. The number of users in the sets A and V determine the outcome of the

attack, rather than the particular users in each set. Therefore, an attacker obtains the same

benefit using the partitions {A1, V1} and {A2, V2} if |A1| = |A2| and |V1| = |V2|.

Remark 1. Assumption 3 implies that all users have similar characteristics, therefore, their

individual characteristics do not affect the impact of attacks.

From Assumption 3 we can characterize an attack with the tuple (λ, γ), where λ ≥ 1 is

the severity of the attack and γ ∈ [0, 1] is the proportion of users who profit from the attack.

Let us denote the number of attackers as NA = dγNe = |A| and the number of victims as

NV = N −NA = |V|.5

Example 2. Let us consider a homogeneous population with N = 100 users, who have

valuations of the form

vi(qi) = v(qi) = α log(1 + xi),

4We call attackers to all the users that profit form an attack, although some of them might be unaware of
the attack.

5Attacks with γ ∈ {0, 1} do not have any effect, because either A or V is empty, making the solution of
Eq. (4.6) equal to µ.
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Figure 4.3: Normalized utility of a fraudster as function of the intensity of the attack λ, for
different number of attackers. The profit increases with λ, but the number of victims limits
the maximum profit achieved increasing λ.

where α = 4. Moreover, we define the minimum demand Qi = 0 for all users and the

parameters of the price function are β = b = 1. Fig. 4.3 shows the normalized profit of the

attacker with different attack parameters (we normalize the profit with respect to the profit

without attacks, i.e., γ = 1). Observe that the attacker’s profit increases with the degree of the

attack λ; however, it reaches an upper bound for large values of λ. This happens because the

victims reduce their demand as the intensity of the attack increases, but eventually they reach

their lower demand Qi. Moreover, by sharing the benefits with less users (i.e., with lower γ),

the attacker can increase his profit, because the attack can produce larger demand reductions.

Attacks on DLC

Attacks on centralized systems have almost no restrictions. For instance, in the recent attacks

to the Ukraine’s power system (Greenberg, 2017; Zetter, 2016), the perpetrators gained access

over the grid’s control centers and were able to take off multiple substations. Similarly, in our

case the attacker can compromise the DR system that solves the optimization problem in

Eq. (4.3) and modify it to solve an alternative function that captures his objectives. Thus, an

attack on a DLC system can allow the attackers to implement the solution of the optimization

problem in Eq. (4.6).
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Attack on DP

In a decentralized system the attacker has more restrictions because users make decisions

independently. However, the fraudster can implement his optimal attack modifying the

messages sent by the utility to the users, in particular, the incentive function I(·) (see

Fig. 4.1). Leveraging the theory of mechanism design we can show that an attacker can

incentivize all agents to adopt x by sending the following false incentives:

Ĩj(q) = (‖qV‖ − qj + λ ‖qA‖)
(

N

N − 1
p
(∥∥q−j∥∥)− p(‖q‖)) , (4.7)

for all j ∈ V and

Ĩi(q) =

(
1

λ
‖qV‖+ ‖qA‖ − qi

)(
N

N − 1
p
(∥∥q−i∥∥)− p(‖q‖)) , (4.8)

for i ∈ A. The fake incentive functions in Eq. (4.7) and Eq. (4.8) deceive users showing either

higher prices (in the case of victims) or lower costs (in the case of attackers).

Properties of the Attack

Let us define the benefit of attackers as

Ψ(µ,x, γ) =
∑

i∈A
{Ui(x)− Ui(µ)}

and the losses of victims as

Ξ(µ,x, γ) =
∑

j∈V
{Ui(µ)− Uj(x)}.

The following result shows that both attackers and victims have non-negative benefits and

losses, respectively; however, the losses exceed the benefits.

Proposition 1. Let µ be the optimal social outcome (the solution to Eq. (4.3)) and x the be

outcome with an attack (λ, γ) (solution to Eq. (4.6)). If λ > 1, then Ξ(µ,x, γ) ≥ Ψ(µ,x, γ) ≥
0.

Proof. From the optimality of µ and x we have

λ
∑

i∈A
Ui(x) +

∑
j∈V

Uj(x) ≥ λ
∑

i∈A
Ui(µ) +

∑
j∈V

Uj(µ) (4.9)

and ∑
i∈A

Ui(x) +
∑

j∈V
Uj(x) ≤

∑
i∈A

Ui(µ) +
∑

j∈V
Uj(µ). (4.10)

38



www.manaraa.com

From Eq. (4.9) we obtain

λΨ(µ,x, γ) ≥ Ξ(µ,x, γ)

and from Eq. (4.10) we obtain

Ψ(µ,x, γ) ≤ Ξ(µ,x, γ).

From the previous expressions we have

λΨ(µ,x, γ) ≥ Ψ(µ,x, γ),

which requires that Ψ(µ,x, γ) ≥ 0, otherwise the inequality is not satisfied.

Let us denote by x the demand resulting from an attack (λ, γ), and by the vectors xV

and xA the consumption of victims and attackers, respectively. Thus, ‖xA‖ =
∑

i∈A xi and

‖xV‖ =
∑

j∈V xj .

The Lagrangian associated with the problem in Eq. (4.6) is

L(q,ν) = λ
∑

i∈A
Ui(q) +

∑
j∈V

Uj(q) +
∑

h∈P
νh · qh,

for slack variables νi ∈ R. Thus, the demand profile under an attack, denoted by x, must

satisfy the following optimality conditions:

v̇i(xi)− β
(
||x||+ ‖xA‖+

1

λ
‖xV‖

)
− b+

1

λ
νi = 0, (4.11)

v̇j(xj)− β (||x||+ ‖xV‖+ λ ‖xA‖)− b+ νj = 0, (4.12)

xh ≥ 0, νh ≥ 0, (xh −Qh)νh = 0, (4.13)

for all i ∈ A, j ∈ V , and h ∈ P .

The consequences of the attack are: i) reduction of demand by victims; and ii) increased

demand by attackers; These properties are formally proved in the following proposition:

Proposition 2 (Proposition 1 in (Barreto and Cárdenas, 2015a)). Let µ be the ideal equilib-

rium (Eq. (4.3)) and x be the equilibrium with an attack (Eq. (4.6)). If there is an attack

with λ > 1, then the consumption of attackers increases and the consumption of victims

decreases with respect to the ideal case. That is, xi > µi and xj < µj, and ‖x‖ < ‖µ‖ for

every attacker i ∈ A and victim j ∈ V.
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Proof. We can evaluate the derivative of the attacker’s objective function (Eq. (4.6)) in the

ideal outcome µ to obtain

λ (v̇i(µi)− p(||µ||)− β ‖µ‖) + (λ− 1)β ‖µV‖ ,

v̇j(µj)− p(||µ||)− β ‖µ‖+ (1− λ)β ‖µA‖ .

Note that the left hand side of the previous equations is precisely the FOC of the original

optimization problem (Eq. (4.4)). Thus, the derivative with respect to qi is

∂

∂qi
fa(q)

∣∣
q=µ

= (λ− 1)β ‖µV‖ > 0,

and the derivative with respect to qj is

∂

∂qj
fa(q)

∣∣
q=µ

= −(λ− 1)β ‖µA‖ < 0.

Hence, we know that xi > µi and xj < µj .

From Assumption 2 we have µi > 0, which together with Proposition 2 results in

xi > µi > 0 for i ∈ A. Therefore, the slack variables for the attackers (see Eq. (4.13)) are

equal to zero, that is, νi = 0 for i ∈ A.

Optimal Attack

The adversary can design the attack (λ, γ) to guarantee some maximum level of benefit, or

equivalently, to limit the impact on the system. In particular, he must pay special attention

to the proportion of attackers γ, which limits the maximum benefit form the attack (see our

previous example). To find the maximum benefit with some γ we assume that λ → ∞ to

guarantee that the victims adopt their minimum demand Qj , for j ∈ V .

From Assumption 3 we know that the population is homogeneous (see Remark 1), therefore

all attackers will have a similar demand, that is, xi = xa for i ∈ A and ‖xA‖ = Naxa ≈ γN .

Moreover, we assume that ‖xV‖ = Nvxv ≈ (1 − γ)Nxv. Therefore, from the equilibrium

conditions in Eq. (4.11) we have

v̇i(xa) = 2βγNxa + β(1− γ)Nxv + b.

An attacker that knows v̇(·) can estimate the demand of attackers as a function of γ, that is,

xa(γ), which can give an estimate of the utility with the attack as a function of γ.

If the attacker does not know the valuation function of the other users, then it won’t

estimate the impact of an attack.
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4.3.2 Malicious Attacker

We assume that the malicious attacker wants to damage the system, but cannot attack the

system directly, either because the system has protections or because he resides in another

country. Therefore, this attacker would use cyber attacks to target the DR infrastructure and

damage the system. The malicious attacker can try to create a sudden (unanticipated) peak

of demand, which can cause local blackouts (by tripping a distribution fuse or circuit breaker)

or kickstarting blackstart generators. Creating a demand peak with DLC is straightforward,

since the attacker can directly send all electricity consumption signals to their maximum value

at the same time. On the other hand, the most intuitive attack in systems with DP consists

in selecting the DR signals to reduce prices (and increase the demand) at the time with

highest demand, denoted as tattack.
6 Specifically, the attacker can compromise the incentive

signal and send the following malicious incentives:

Imi (q) =

{
Ii(q

t) + σ1||q||1 if t = tattack,

Ii(q
t) otherwise,

where σ1 > 0.

Alternatively, the attacker can increase the impact of the attack by increasing the prices

in hours previous to the attack, and then lower them at tattack. In this way users would

accumulate tasks (i.e., demand) until the price becomes favorable. The attacker can use the

following incentives

Imi (q) =


Ii(q

t) + σ1||q||1 if t = tattack,

Ii(q
t)− σ2||q||1 if t ∈ [ta, tb],

Ii(q
t) otherwise,

where σ1, σ2 are positive real numbers, [ta, tb] is the period during which the attack focuses

on reducing the demand.

Example 3. Fig. 4.4 shows the impact of both the naive and the strategic attacks during the

initial transition period.7 Simulations are made with σ1 = 50, σ2 = 100, ta = 0hrs, tb = 17hrs,

6Here we consider that the market has diverse equilibriums during the day, according to the users’
preferences. For example, users consume more energy during the evenings, and less in the early morning. We
denote with the vector qt the demand of the population at time t.

7In this example we use population games (Mojica-Nava et al., 2015; Sandholm, 2011; Hofbauer and
Sigmund., 1998; Barreto, 2014) to model how users adjust their demand according the incoming information
(the system’s state of the incentive function). We refer the interested reader to (Barreto et al., 2014) for more
details on the implementation.
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Figure 4.4: Impact of a malicious attack on the population demand for two different attacks
1) attack on a single hour and 2) coordinated attack on various hours of the day.

tattack = 20hrs. In particular, the attack time coincides with the demand peak in in the

Pareto optimal outcome. The naive attack succeeds in causing a increase of the demand at

tattack. On the other hand, the strategic attack achieves a greater peak by causing demand

reduction prior to the attack. Roughly speaking, the strategic attack sets conditions so that

the population has more resources to consume at tattack.

4.3.3 Comparison of Attacks on DLC and DP

A fraudster can implement attacks in both DR systems; however, attacking systems with

dynamic prices requires more effort and can generate less profit. On one hand, the incentives

scheme charges higher prices to users with higher demand. Hence, the attacker pays higher

prices, but he still can get profit from the attack (see Fig. 4.5 for an example of the attacker’s

utility as a function of λ and γ). Likewise, the impact on the population is less severe with

DP, because the victims are partially compensated by the attackers (see Fig. 4.6). On the

other hand, the attack in DP requires that each users receives a particular incentive function,

therefore, the attacker needs to attack multiple devices.

Moreover, unlike DLC, an attack on DP suffers delays, because the effects take place only

once users adjust their demand. Also, with DP users can have more mechanisms to verify if

the incoming information is legitimate e.g., by comparing with multiple sources. However,
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Figure 4.5: Utility of the attacker in systems with DLC and DP. Fraudsters obtain more
benefits from attacking DLC systems.

with DLC users must carry out the commands sent by the utility, but they can fail to verify

whether the commands are legitimate. This occurs because users have limited information to

check that the commands maximize the customer surplus.

Attack Requirements

The fraudster can send false information either by compromising the system that broadcasts

information or targeting directly the devices that optimize locally the demand. Also, the

fraudster can implement the attack if he can discriminate the information sent to the groups

of attackers and victims. Although the attacker does not need the valuation functions vi(·),
he needs the total demand of both attackers and victims, ||qA|| and ||qV ||, respectively.8

8In our assumption the attacker has as much information as the central agent. Hence, although the
demand of users is private, the attacker can observe it by compromising the DR management center.
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Figure 4.6: Impact of the attack in the customer surplus as a function of the attack severity
λ for both the DLC and dynamic pricing schemes with γ = 0.01.

4.4 Detecting Attacks

In this section we address the problem of determining whether a change in demand occurred

due to a fault or an attack (by a fraudster). In particular, we analyze how asymmetric

information affects the detection of attacks.

4.4.1 Faults in the System

Here we assume that the utility knows the optimal demand µ, which allows the detection of

anomalies. If the utility observes an anomaly q, it can use Proposition 2 to classify the users

as potential victims (or attackers), depending if they reduce (or increase) their consumption.

In other words, deviations from µ reveal the sets A and V, which allows to determine the

parameter γ of the attack. Accordingly, ‖qA‖ ≥ ‖µA‖ and ‖qV‖ ≤ ‖µV‖.
Now, let us define the expected demand of users from the set A in case of attacks or

faults. On one hand, consider an attack (λ, γ) with demand ξ that produces the observed

demand of users from the set V , that is, ξ satisfies ‖ξV‖ = ‖qV‖. In this case, the demand of

users from the set A satisfies Eq. (4.6). On the other hand, we denote with the vector ζ the

demand that honest users would have when a fault reduces the demand of users from the

set V .9 Consequently, the response of honest users is given by Eq. (4.4), when the set V has

9Unlike attacks, faults are unintentional, and therefore, no user tries to take advantage to get more profit.
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a fixed demand. The next result shows that, given our previous considerations, attackers

consume more energy than honest users.

Lemma 1. Let ζ and ξ be the demand without and with an attack (λ, γ), respectively. If

‖ζV‖ = ‖ξV‖ = Qv, then ‖ζA‖ ≤ ‖ξA‖.

Proof. Let us denote by ζ and ξ the demand of normal and a fraudster users, respectively.

From Eq. (4.4) we know that the demand without an attack satisfies

v̇i(ζi)− 2β ‖ζA‖ − b = 2β ‖ζV‖ , (4.14)

and the demand with an attack (λ, γ) satisfies Eq. (4.11)

v̇i(ξi)− 2β ‖ξA‖+

(
1− 1

λ

)
β ‖ξV‖ − b = 2β ‖ξV‖ , (4.15)

for all i ∈ A. Now, let us define ‖ζV‖ = ‖ξV‖ = Qv to observe the reaction of normal

users and attackers to a given demand of victims Qv. Let us assume by contradiction that

‖ζA‖ > ‖ξA‖, hence, there exists some i ∈ A such that ζi > ξi. From Assumption 1 we know

that v̇i(ζi) < v̇iξi. Therefore, Eq. (4.14) and Eq. (4.15) lead to

2β (‖ξA‖ − ‖ζA‖) >
(

1− 1

λ

)
β ‖ξV‖ .

However, the previous expression implies that 0 > ‖ξV‖, which is not possible from the

demand constraints. This contradiction leads to ‖ζA‖ ≤ ‖ξA‖.

4.4.2 Case with Full Information (DLC)

From Eq. (4.11) we can extract the following relationship:

λ =
β||xV ||

v̇i(xi)− 2β||xA|| − β||xV || − b
, (4.16)

If the utility company knows the valuation function of users, then it can use the previous

equation to determine the value of λ. Note that λ = 1 indicates normal behavior, while

λ > 1 suggests an attack. For instance, if we replace the normal demand evaluated in ζ (see

Eq. (4.14)) into Eq. (4.16) we obtain λ = βQv/βQv = 1, which indicates normal behavior.

Observe that if ||xV || = 0, then the estimation of λ is equal to zero.
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4.4.3 Case with Asymmetric Information (DP)

Naive Detection

It might be reasonable to raise alarms when the total demand falls below some threshold ε,

determined using historic consumption data. However, an attacker can bypass the detection

mechanism choosing attacks that satisfy ‖x‖ ≤ (1− ε)‖µ‖. Also, this detection mechanism

does not distinguish between faults and attacks because any demand beyond the threshold

raises alarms.

We can design better detection mechanisms by considering the characteristics of the

attacks.

Improved Detection

Since the utility ignores the valuation function of users, it cannot determine if the observed

demand corresponds to a normal behavior (as in Section 4.4.2). Instead, with a sample of the

demand without attacks, in this case µ, the utility can try to estimate whether the observed

demand matches the expected consequences of a given attack (λ, γ). The following result

provides a relation between the demand of attackers and victims

Proposition 3 (Proposition 3 in (Barreto and Cárdenas, 2015a)). Let µ be a solution to

Eq. (4.3) and x the demand with an attack (λ, γ) that solves Eq. (4.6). Then ‖xA‖ ≥
Ω(µ, ‖xV‖ , λ, γ) and ‖xV‖ ≤ Λ(µ, ‖xA‖ , λ, γ), where

Ω(µ, ||xV ||, λ, γ) =
2

(1 + λ)
(||µ|| − ||xV ||) ,

and

Λ(µ, ||xA||, λ, γ) =
2λ

(1 + λ)
(||µ|| − ||xA||) .

Proof. From Eq. (4.11) and Eq. (4.12) we get

||xA|| =
1

β(1 + λ)
(v̇j(xj)− 2β||xV || − b) , (4.17)

and

||xV || =
λ

β(1 + λ)
(v̇i(xi)− 2β||xA|| − b+ νj) , (4.18)

where νj ≥ 0. The valuation of each user vi(·) is a concave function, thus the marginal

valuation v̇i(·) is decreasing and non-negative, therefore, from Proposition 2 we get

v̇i(xi) ≤ v̇i(µi), v̇j(xj) ≥ v̇j(µj).
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The previous equations can be used along Eq. (4.4) to extract the following inequalities:

v̇i(xi) ≤ v̇i(µi) ≤ 2β||µ||+ b, (4.19)

v̇j(xj) ≥ v̇j(µj) ≥ 2β||µ||+ b, (4.20)

Here we can replace Eq. (4.19) and Eq. (4.20) in Eq. (4.17) and Eq. (4.18), respectively,

resulting

||xA|| ≥
2

β(1 + λ)
(||µ|| − ||xV ||) = Ω(µ, ||xV ||, λ, γ)

and

||xV || ≤
2λ

(1 + λ)
(||µ|| − ||xA||) = Λ(µ, ||xA||, λ, γ).

With the previous boundaries we can estimate the demand of attackers ‖xA‖ using the

demand of victims ‖xV‖. Hence, for some demand q, if ‖qA‖ exceeds Ω(‖µ‖ , ‖qV‖ , λ, γ),

then we can conclude that the system is under attack.

Now, let us investigate if this detection scheme allows us to differentiate attacks from

faults. On one hand, we can distinguish faults from attacks if the response to faults ‖ζV‖ lies

below the estimated demand, that is, if

‖xA‖ ≥ Ω(µ, ‖xV‖ , λ, γ) ≥ ‖ζA‖ ,

However, we cannot distinguish faults if the honest response of users exceeds or equals the

the estimated demand of attackers, that is, if

‖xA‖ ≥ ‖ζA‖ ≥ Ω(µ, ‖xV‖ , λ, γ).

This previous situation occurs when ‖xV‖ = 0, as proved in the following result.

Lemma 2. If ‖xV‖ = 0 we cannot differentiate attacks from faults, because the demand of

users in the set A is the same in both cases, that is, ‖xA‖ = ‖ζA‖.

Proof. First, if ‖xV‖ = ‖ζV‖, then we can use the same procedure as in Proposition 2 to

show that

xi ≥ ζi ≥ µi, (4.21)

for i ∈ P . Moreover, Proposition 3 leads to

‖xA‖ ≥ Ω(µ, ζ, ‖xV‖ , λ, γ),
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which, using the fact that ‖xV‖ = ‖ζV‖, can be rewritten as

‖ζA‖ ≥ ‖xA‖ −
λ− 1

2λ
‖xV‖ . (4.22)

From Eq. (4.21) and Eq. (4.22) we obtain

‖xA‖ ≥ ‖ζA‖ ≥ ‖xA‖ −
λ− 1

2λ
‖xV‖ .

However, if ‖xV‖ = 0, then we conclude that ‖xA‖ = ‖ζA‖, that is, we cannot distinguish

the demand behavior of attackers and honest users.

Moreover, the proposed detection scheme has some drawbacks. On one hand, the utility

ignores the attack intensity λ, hence, it can fail to estimate the attackers’ minimum demand.

Observe that the demand estimation decreases with the intensity λ, that is,

Ω(µ, ‖xV‖ , λ− ε, γ) ≥ Ω(µ, ‖xV‖ , λ, γ),

for some ε ≥ 0. Therefore, if the utility uses λ̃ < λ to estimate the boundary, it can fail to

detect attacks (e.g., have false negatives). On the other hand, if λ̃ > λ, then it can classify

faults as attacks (e.g., have false positives). The following example illustrates the ideas of the

proposed detection scheme.

Example 4. Fig. 4.7 shows the demand of both attackers and victims with attacks with

constant intensity λ = 1.7 and γ taking values in the interval [0.01, 1]. Observe that the

demand of victims decreases as γ increases, reaching the minimum demand ‖xV‖ = 0 for

γ ≥ 0.05. In other words, a set A with five or more attackers forces the remainder of the

population to consume their minimum demand. Fig. 4.7 also shows the aggregate demand

that users from the set A have when a fault, rather than a attack, reduces the demand of

victims to ‖xV‖. Here we confirm the result from Lemma 1, which show that the demand

resulting from a fault ‖ζA‖ is strictly lower than the demand with an attack ‖xA‖, except

when ‖xV‖ = 0.

Fig. 4.7 also shows the estimated demand of attackers with an attack (λ̃, γ), defined by

the function Ω(µ, ‖xV‖ , λ̃, γ), where the estimated impact of the attack is λ̃ = 2. Observe

that the our estimation fails to distinguish attacks from faults when ‖xV‖ is equal or close to

zero (see Lemma 2). Also, since Ω(µ, ||xV ||, λ̃, γ) is linear with respect to ||xV ||, estimations

with λ̃ > λ will move the boundary downwards, increasing the number of faults classified as

attacks (false positives). On the other hand, estimating the boundary with λ̃ < λ will move it

upwards, which can result in attacks classified as faults (false negative).
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Figure 4.7: Total demand of attackers ‖xA‖ and honest users ‖µA‖ when ‖xV‖ = ‖ζV‖ for
λ = 1.7 and different values of γ. The demand of attackers is higher than the demand of
honest users, except when ‖xV‖ = 0.

4.5 Design of Penalties

In this section we design of penalties to make attacks unprofitable. Even though some attacks

make their author untraceable, the utility company can impose penalties on all users that

benefit from the attack. Although this strategy penalizes agents who involuntarily profited

from the attack, this strategy can prevent rational agents from launching attacks. Below

we analyze how to design penalties Φi(µ,x, γ) for each user i ∈ P, having into account the

asymmetric information of the utility.

4.5.1 Penalties with Full Information (DLC)

Intuitively, the penalties should be equal to the losses caused by the attack, i.e., the attackers

should held accountable for the losses of the population (this is similar to the Clark pivot

mechanism (Nisan et al., 2007)). Therefore, we design the penalties to satisfy∑
i∈A

Φi(µ,x, γ) = Ξ(µ,x, γ) ≥ Ψ(µ,x, γ), (4.23)

where the inequality follows from Proposition 1. In particular, we can penalize each attacker

with an amount proportional to the benefit that they received with the attack, therefore, we
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can select the penalties as

Φi(µ,x, γ) = Ξ(µ,x, γ)
Ui(x)− Ui(µ)

Ψ(µ,x, γ)
,

which satisfy Eq. (4.23). With the previous incentives we guarantee a negative profit for the

profit attackers, thus

Ui(x)− Ui(µ)− Φi(µ,x, γ) ≤ 0.

This scheme is desirable to the central planner, because it saves the expenses for repairing

the damage caused to victims. Furthermore, the penalties exceed the profit earned by the

attackers, making attacks unprofitable. Also, an utility with full information of the consumer

preferences can compute the penalty functions Φi(µ,x, γ).

4.5.2 Penalties with Asymmetric Information (DP)

With asymmetric information we cannot calculate the losses caused by attacks; however, we

can estimate the losses using the concavity of the utility functions. In particular, we can

estimate an upper bound of the losses suffered by the jth victim as

Uj(µ)− Uj(x) ≤ ∇Uj(x)(µ− x) =
∑

h∈P

∂

∂qh
Uj(q)

∣∣∣
q=x

(µh − xh),

where the marginal utility with respect to qi is equal to

∂

∂qj
Uj(q) = v̇j(qj)− p(||q||)− βqj ,

∂

∂qi
Uj(q) = −βqj .

However, the marginal valuation v̇j(xj) is unknown and we cannot estimate an upper bound,

but the optimality condition in Eq. (4.12) provides a lower bound. Therefore, in this case the

penalties must underestimate the losses of users, but we can guarantee that this estimation

exceeds the benefit of attackers.

Consider the following lower bound on the losses victims

Uj(µ)− Uj(x) ≥ ∇Uj(µ)(µ− x).

Summing over all j ∈ V we obtain the following boundary for the total losses

Ξ(µ,x, γ) ≥
∑
j∈V
∇Uj(µ)(µ− x) = β ‖x‖ ‖µV‖ − β ‖µ‖ ‖xV‖ . (4.24)
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On the other hand, the attackers’ profit has the following upper bound

Ui(x)− Ui(µ) ≤ ∇Ui(µ)(x− µ) (4.25)

Hence, the total benefit of attackers has the following upper bound

Ψ(µ,x, γ) ≤
∑
i∈A
∇Ui(µ)(x− µ) = β ‖µ‖ ‖xA‖ − β ‖x‖ ‖µA‖ . (4.26)

Observe that the estimated losses in Eq. (4.24) are equal to the estimated benefits of

attackers in Eq. (4.26). Therefore we design penalties of the form

Φi(µ,x, γ) = ∇Ui(µ)(x− µ), (4.27)

which make attacks unprofitable for the attackers (once the attack is detected). From

Eq. (4.25) the profit of an attacker that is penalized with Eq. (4.27) is negative

Ui(x)− Ui(µ)− Φi(µ,x, γ) ≤ 0.

Fig. 4.8 shows an example of the effect of penalties on the profit of attackers. In this case the

penalties are insufficient to compensate the damage caused to victims.

The penalties can fail when unintentional faults cause deviations from the expected

behavior. Recall from Section 4.4.2 that faults can change the normal electricity demand from

‖µ‖ to ‖ζ‖, where ‖µV‖ > ‖ζV‖. Since the reaction to any user is to increase his demand

(even if it is honest), we have ‖µA‖ < ‖ζA‖. In this case, the users that belong to A can

receive penalties, even if ‖ζA‖ satisfies the normal behavior stated in Eq. (4.4).

4.6 Conclusions

In this work we introduced an attack model for DR programs that considers strategic

adversaries who pursue different goals: either profit or damage the system. In particular, the

fraudster attacker has specific goals, which balance both profit and anonymity (see Eq. (4.6)).

On the other hand, the malicious attacker attempts to cause peaks in demand. We showed

that, although the attackers have different objectives, they can use the same techniques to

achieve their goals (in both centralized and decentralized systems).

We found that the structure of decentralized systems negatively affect both the attacker

and the defender. On one hand, the fraudster can get less profit in decentralized systems

(see Fig. 4.5). On the other hand, although the population has less losses in decentralized
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Figure 4.8: The design of penalties on the attacker’s profit make it unprofitable to launch
attacks, even with asymmetric information.

systems (see Fig. 4.6), the defender has more difficulties detecting and distinguishing attacks

from accidental failures. Furthermore, the penalties on attackers cannot fully compensate

the victims of the attacks.

Also, decentralized systems can allow users to verify the legitimacy of the incoming

information. For instance, since all users receive the same signals, users can check the

legitimacy of the received messages with multiple sources. In contrast, in centralized systems

users receive private signals (which depend on their private preferences) and they have limited

information to check whether the commands truly maximize the social goal.

4.6.1 Future Directions

It would be interesting to explore other protection schemes, such as security by deception. For

example, the defender would detect attacks and diminish their impact installing honeypots

and intrusion detection systems (IDS).

Another interesting direction consists in investigating how additional information about

the user’s demand (e.g., response of honest users to faults or the demand with real attacks)

can improve the detection scheme.
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5.1 Introduction

In the last decade cyber-attacks have become prevalent and the motivations behind the

attacks more diversified. Attackers may be driven by monetary rewards (Cárdenas et al.,

2009), by activism (Olson, 2013), or to cause sabotage (Lee et al., 2016; Barreto et al.,

2014). To defend against these attacks, firms need to invest in cyber-security technologies;

however, they have limited security resources and should solve the nontrivial problem of

allocating them. For instance, if firms use all their resources in prevention technologies (e.g.,

best practices in access control, security policy enforcement, sandoboxing, frequent software

updates, etc.), then they can fail to discover security breaches in their systems. Part of their

efforts should include security monitoring, attack detection, identification, and mitigation (Li

et al., 2011; Bejtlich, 2013). Attackers also face a similar resource allocation problem, between

looking for new vulnerabilities, and the effort required in exploiting them (Axelrod and Iliev,

2014).

Incentives and the economics of information security is an area that has been explored

significantly for over a decade (Anderson, 2001). In addition to studying security investments,

the literature in security economics has also studied how to prevent attacks decreasing

the adversary’s incentives (Manshaei et al., 2013). For example, in our recent work on

physical attacks against the Colombian power infrastructure, we found that an electric power

transmission company redesigned electric tower repair contracts to minimize the incentives

that service companies had to launch attacks against the power grid (Barreto and Cárdenas,

2016).

In this chapter we discuss how to balance investments in prevention and detection technolo-

gies, as a response to attackers who also have to manage investments to find vulnerabilities

and exploiting them. Since attribution is a hard problem in cyber-attacks, we assume that the

defender cannot penalize directly the attackers. Moreover, we analyze how limited resources

and asymmetric information affect the investments of the defender.

We model the security of a firm’s infrastructure using a Markov decision process (i.e.,

a stochastic game (Shapley, 1953; Puterman, 2014; Hernández-Lerma and Lasserre, 2012;

Bensoussan, 2011)). With this model we formulate the interaction between an attacker and

the firm (defender) as a repeated game in which the firm and the attacker seek to protect and

compromise a system, respectively. We find that the defender cannot prevent the attacker

from launching attacks once a vulnerability is discovered by the attacker. However, investing

in prevention deters the interest of the attacker in the system, because it becomes more costly

for the attacker to search vulnerabilities. On the other hand, we observe that the defender
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prioritizes prevention over detection in cases with asymmetric information. Nonetheless,

asymmetries in information do not have a significant impact in cases with low resources.

Our work is closely related to (Shiva et al., 2010; Alpcan and Basar, 2006), which model

the interaction between an attacker and a defender with stochastic games. In these cases

the defender has imperfect information about the state (i.e., security) of the system, due

to imperfect sensors. This work departs from these works in the following aspects. First,

we consider a non-zero sum game with nonlinear cost functions. Second, we give explicit

solutions to the payoff functions of each player and consider scenarios with limited resources.

Third, in our analysis of asymmetric information we adopt a pessimistic posture assuming

that the defender cannot measure the state of the system.

The chapter is structured as follows: Section 5.2 introduces the stochastic game that

models the interaction between an attacker and a defender. Sections 5.3 and 5.4 show the

optimal strategies of both attacker and defender. In Section 5.5 we show some examples of

the defender’s strategy with information asymmetries and limited resources. We finalize in

Section 5.6 with a discussion of the insights that can help firms deciding how to allocate their

resources.

5.2 Attacker-Defender Model

We assume that the defender of a critical infrastructure (a nation state or a firm) can invest

resources in prevention and detection strategies. These strategies have different purposes

in the system: on one hand, prevention involves actions to minimize the vulnerability of

systems; for instance, frequent software updates or secure software development can reduce

the attack surface of the system. On the other hand, detection deals with identifying ongoing

attacks (e.g., through a honeypot or an intrusion detection system) and responding to attacks.

Thus, the defender has to choose the level of prevention and detection, denoted vp and vd

respectively, where vp, vd ∈ [0, 1].

We assume that the adversary attacks the system to get profit. In this case the attacker

invests its resources in two activities: looking for vulnerabilities and exploiting them. The

adversary must find vulnerabilities (either by itself or by purchasing them) before launching

attacks, which have multiple intensity levels. The intensity of the attack determines both the

profit and the probability that the defender discovers the attack. Intuitively, attacks of low

intensity (or stealthy attacks) have a low probability of detection (Axelrod and Iliev, 2014).

For instance, a malware tailored specifically to attack a firm has less chances of detected by

the security community. However, if a malicious group uses the same vulnerabilities to attack
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multiple firms (and get more profits from the attacks), then they also increase the risk of

detection and can be associated as the same group behind a variety of attacks. Therefore

attackers must act cautiously, because upon detection the defender can identify and correct

the vulnerabilities of the system, which reduces the effectiveness of future attacks. Also, their

actions can reveal their identity and goals. In summary, we assume that the attacker chooses

the effort to look for vulnerabilities (or hack) the system and the intensity of the attacks,

denoted by vh and va, respectively, with vh, va ∈ [0, 1].1

In this case, we assume that the system (critical infrastructure) has two states, namely

a compromised state S0 and a state free of attackers S1, where S = {S0, S1} is the set of

states. The actions of both players determine the transition between states, as illustrated in

Fig. 5.1. Here, π(va, vd) denotes the probability of detecting (and stopping) an attack made

with intensity va, when the detection scheme has degree vd. On the other hand, δ(vh, vp)

denotes the probability of discovering a vulnerability when the attacker makes an effort vh

to hack the system and the defender prevents vulnerabilities with effort vp. The transition

probabilities are defined as

π(va, vd) = P(xk+1 = S1|xk = S0, va, vd),

and

δ(vh, vp) = P(xk+1 = S0|xk = S1, vh, vp),

where xk is the state of the system at time k.

S0 S1

1− π(va, vd) π(va, vd) 1− δ(vh, vp)

δ(vh, vp)

Figure 5.1: Markov process that describes the system’s state transitions between a compro-
mised state S0 and a secure state S1.

We consider typical decreasing marginal returns in the transition probabilities action. In

particular, we assume that π(va, vd) is a continuous, increasing, and concave function with

respect to va and vd. That is, the probability of detection increases with the degree of the

1The effort of the agents determine their investments (or expenditures) to protect or attack the system.
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attack and with the quality of the detector. We assume that the defender cannot detect

attacks when it makes no effort to detect them (vd = 0) or when the adversary does not

execute attacks, that is, π(0, vd) = π(va, 0) = 0. Also, we assume that π(1, 1) = 1.

On the other hand, δ(vh, vp) is continuous, increasing, and concave with respect to vh and

continuous, decreasing, and convex with respect to vp. Thus, the probability of discovering

a vulnerability increases with the effort of the attacker and decreases with the investment

in prevention. We assume that the attacker fails to find vulnerabilities when the system

has maximal prevention (vp = 1) or with minimum effort of the attacker (vh = 0), that is,

δ(vh, 1) = δ(0, vp) = 0. Furthermore, we assume that δ(1, 0) = 1.

5.2.1 Attacker

At state S0 (vulnerable state), the attacker knows a vulnerability that allows attacks on

the system. The benefit of the attack depends on its intensity va, and is represented by

a continuous, increasing, and convex function ga : [0, 1] → R, which satisfies ga(0) = 0.

Exploiting the vulnerability costs C0 during each time period that the attack lasts i.e., C0 is

the attack operational overhead or the base cost of maintaining the infrastructure to carry

out the attack. We assume that the defender patches the vulnerabilities (making them useless

in the future) once he discovers the attack, hence, the system jumps to the secure state S1. In

the state S1 (secure state) the attacker has to invest an amount Cv to discover another useful

vulnerability. Here we assume that the attacker finds new vulnerabilities with probability

δ(vh, vp). In summary, the attacker’s cost with an strategy vA = (va, vh) at state x ∈ S is2

lA(x, vA) =

−ga(va) + C01va>0 if x = S0,

Cv1vh>0 if x = S1.

5.2.2 Defender

The defender can implement a protection strategy vD = (vd, vp) that prevents and detects

attacks with cost Cp(vp) and Cd(vd), respectively. The security scheme of the defender affects

only its own cost and the transition probabilities of the system. The cost function of the

defender is defined as

lD(x, vA, vD) =

gd(va) + Cp(vp) + Cd(vd) if x = S0,

Cp(vp) + Cd(vd) if x = S1,

2Here we assume that the attacker cannot be penalized. Thus, the cost of an attack only depends on the
implementation of the attack. Furthermore, we assume that the attacker cannot discover new vulnerabilities
in state S0.
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were gd(va) is the loss caused by an attack of intensity va. We assume that the cost functions

gd, Cd, and Cp are convex increasing.

Remark 2. In this model we assume that the defender stops attacks once he detects them;

however, the defender might be unable to fix all the vulnerabilities that allowed attacks.

In particular, IoT devices have a short lifespan and fabricators do not have incentives to

offer maintenance (e.g., invest in security patches or repairs) due to high costs (Leverett

et al., 2017). Here we assume that the defender would stop attacks by restoring the system’s

components to their initial configuration, to undo adverse alterations. On the other hand,

fixing known vulnerabilities becomes part of the efforts in prevention (vp), and Cp(·) reflects

such costs. Therefore, low investment in prevention allows the attacker to reuse vulnerabilities

in its attacks.

5.3 Optimal Attack Policy

Let us assume that the attacker chooses an optimal attack policy VA that minimizes the cost

of the attack, given some protection strategy vD = (vd, vp). We consider an infinite horizon

decision problem in which the attacker wants to find the policy VA = {vA,n} (sequence of

actions where vA,n = (va,n, vh,n)) that minimizes the cost functional

JA(x0, VA, vD) = lA(x0, vA,0) + βEVA,vD
x0 {lA(x1, vA,1) + . . .

+ βEVA,vD
xn−1

{lA(xn, vA,n) + . . .}},

where x0 is the initial state, β ∈ [0, 1) is a discount factor and xk ∈ S and vA,k are the state

and the attack strategy at time k = 0, 1, . . ., respectively. We can rewrite the cost functional

as

JA(x0, VA, vD) = lA(x0, vA,0) + βEVA,vD
x0 {JA(x1, VA, vD)}.

The discounted cost is bounded because the gain of the attacker is bounded by

min{0, C0 − ga(1)} ≤ lA(x, vA) ≤ max{Cv, C0}.

Furthermore, since we have an infinite horizon, the control policy is stationary, that is,

vA,n = vA,n+1 = vA for every n ≥ 0. Hence, we can define the attack policy as VA = vA,

where vA = (va, vh). Moreover, using the optimality principle (Hernández-Lerma and Lasserre,

2012; Bensoussan, 2011) we can prove that the minimum cost is equal to

uA(x0) = inf
vA

JA(x0, vA, vD) = inf
vA

{
lA(x0, vA) + βEvA,vDx0 {uA(x1)}

}
. (5.1)
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From the state transition in Fig. 5.1 we define the expected value of a function ϕ(·) (when

the current state is x0 and the strategies are vA and vD) as

EvA,vDx0 {ϕ(x1)} = E{ϕ(x1)|x0, vA, vD} = {ϕ(S0) + (ϕ(S1)− ϕ(S0))π(va, vd)}1x0=S0+

{ϕ(S1) + (ϕ(S0)− ϕ(S1))δ(vh, vp)}1x0=S1 .

Although the attack strategy depends on the state, due to the form of the system we can

simplify the attack strategy as

vA(S0) = (va, 0),

vA(S1) = (0, vh).

Consequently, the value function in Eq. (5.1) evaluated at each state is

uA(S0) = inf
va∈[0,1]

{Ψ(S0, va, vd)} (5.2)

and

uA(S1) = inf
vh∈[0,1]

{Ψ(S1, vh, vp)} , (5.3)

where

Ψ(S0, va, vd) = −ga(va) + C01va>0 + βuA(S0) + βπ(va, vd)(u
A(S1)− uA(S0)) (5.4)

and

Ψ(S1, vh, vp) = Cv1vh>0 + βuA(S1) + βδ(vh, vp)(u
A(S0)− uA(S1)). (5.5)

The following result shows the strategy that minimizes the cost functions in Eq. (5.2)

and (5.3).

Theorem 1. The optimal strategy of the attacker is

1. va = 0 and vh = 0 if K > 0,

2. va = 1 and vh = 0 if K < 0 and B > 0,

3. va = 1 and vh = 1 if K < 0 and B < 0,

where K = C0 − ga(1) and B = Cv + β C0−ga(1)
1−β(1−π(1,vd))δ(1, vp).
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The proof of this theorem is in Appendix A.1.

According to Theorem 1 the attacker makes binary decisions, i.e., whether attack or

search vulnerabilities with maximum effort. In particular, the adversary attacks the system

if he obtains a positive profit (K < 0), and this decision is independent of the defender’s

actions. However, the defense strategy can avoid attacks in the long term, by increasing

the expected cost (B > 0) of discovering vulnerabilities. The following example shows the

conditions in which hacking the system is unprofitable, leading to vh = 0.

Example 5. Here we construct the transition probabilities of the Markov process in Fig. 5.1

multiplying two functions that depend on the action of the attacker or the defender. In

this way, we can specify the characteristics of the transition probabilities. Let us define the

functions

f1(v, c) =
ec − ec(1−v)
ec − 1

and

f2(v, c) =
ec(1−v) − 1

ec − 1
.

Observe that f1(·, c) is concave and f2(·, c) is convex, with v ∈ [0, 1] and c > 0. The parameter

c characterizes the change of the probability with respect to the variable v. Now we construct

π(·) multiplying two concave functions and δ(·) multiplying a concave and a convex function.

Specifically,

π(va, vd) = f1(va, kπ)f1(vd, kπ)

and

δ(vh, vp) = f1(vh, kδ)f2(vp, kδ).

In the experiments we select kπ = kδ = 1. On the other hand, we assume that the attacker

has a linear profit function ga(va) ≥ 4va. Also, we select C0 = 1, Cv = 2, and β = 0.75. With

these parameters the optimal attack effort is va = 1, because C0 − ga(1) < 0.

Fig. 5.2 shows the optimal attack for different defense strategies and different values

of ga(1) (the maximum benefit of the attacker). Here defense actions in the region below

the line lead to hacks (vh = 1). Observe that the region in which the attacker searches for

vulnerabilities (vh = 1) grows with the profit of the attack. Also, the defender can deter hacks

(vh = 0) on the system through investments in prevention (vp ≥ 0.83). On the contrary,

investments in detection cannot discourage hacks by themselves.
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Figure 5.2: Optimal attack strategy as a function of the defense strategy vD = (vd, vp) and
the maximum profit of the attacker ga(1). The region below the line, which lead to hacks
(vh = 1), grows with the attack’s profit.

5.4 Optimal Defense Strategy

Here we consider two scenarios in which the defender either observes or ignores the state

of the system, that is, whether the system is secure or vulnerable. Note that the defender

can choose a different strategy in each state only if the state is observable. Otherwise, the

defender should implement the same strategy in every state. In Section 5.5 we analyze the

impact of the information about the state in the decisions of the defender.

5.4.1 Full Information

In this case we assume that the system’s state is observed by the defender; however, the

defender doesn’t know the exact vulnerabilities. For instance, Stuxnet caused losses to an

uranium enrichment plant, but the defender didn’t realize the source of the failures until the

worm was discovered (Zetter, 2014). Hence the defender in a compromised state S1 cannot

secure the system (jump to S0) without investing in detection.

The defender chooses an optimal protection policy VD = {vD,n} that minimizes the

following cost functional, given an attack strategy vA = (va, vh):

JD(x0, vA, VD) = lD(x0, vA,0, vD,0) + βEvA,VD
x0 {JD(x1, vA, VD)}.
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Similar to the attacker’s case, this cost functional is finite, since the cost function is bounded

by gd(va) ≤ lD(x, vA, vD) ≤ gd(1) + Cp(1) + Cd(1). Furthermore, the defense policy is

stationary, that is, vD,n = vD,n+1 = vD for every n ≥ 0. Therefore, the defense policy is

VD = vD, where vD = (vd, vp). Henceforth we replace the policy VD by the strategy vD. Thus,

the optimal solution satisfies

uD(x0) = inf
vD

JD(x0, vA, vD) = inf
vD

{
lD(x0, vA, vD) + βEvA,vDx0 {uD(x1)}

}
.

The value function evaluated at each state is a follows

uD(S0) = inf
vD∈[0,1]2

{
ΨD(S0, va, vD)

}
and

uD(S1) = inf
vD∈[0,1]2

{
ΨD(S1, vh, vD)

}
.

where

ΨD(S0, va, vD) = gd(va) + Cp(vp) + Cd(vd) + βuD(S0) + βπ(va, vd)(u
D(S1)− uD(S0))

and

ΨD(S1, vh, vD) = Cp(vp) + Cd(vd) + βuD(S1) + βδ(vh, vp)(u
D(S0)− uD(S1)).

In this case, it is not profitable to invest in detection (or prevention) when the system

is in the secure (or vulnerable) state, respectively. Therefore, we can express the defense

strategy as

vD(S0) = (0, vp),

vD(S1) = (vd, 0).
(5.6)

The following result shows the defender’s cost function with the strategy in Eq. (5.6).

Theorem 2. The defender’s discounted cost function is equal to

JD(S0, vA, vD(S0)) =
Q(vd)

1− β +
β

1− β
π(va, vd)(W (vp)−Q(vd))

1 + β(π(va, vd) + δ(vh, vp)− 1)

and

JD(S1, vA, vD(S1)) =
W (vp)

1− β +
β

1− β
δ(vh, vp)(Q(vd)−W (vp))

1 + β(π(va, vd) + δ(vh, vp)− 1)
,

where vD(S0) = (0, vp) and vD(S1) = (vd, 0), Q(vd) = gd(va) + Cd(vd), and W (vd) = Cp(vp).
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The proof of this Theorem is in Appendix A.2.

The optimal defense strategy vD(x) minimizes the cost in every state simultaneously.

However, we simplify the formulation finding an approximate solution that minimizes the

total cost in all the states:3

Minimize
vD(S1),vD(S0)

JD(S0, vA, vD(S0)) + JD(S1, vA, vD(S1))

subject to

vD(S0) = (0, vp),

vD(S1) = (vd, 0),

vp, vd ∈ [0, 1].

Note that if the cost functions Cd(·) and Cp(·) are identical, then the actions vd and vp

are also identical.

5.4.2 Asymmetric Information

In this section we consider the case in which the defender cannot observe directly the state

of the system. Instead, we assume that the defender has some belief about the initial state

and knows the transition probabilities π(·) and δ(·). The uncertainty of the initial state is

captured with a probability distribution of the state:

P(x0 = S0) = p and P(x0 = S1) = 1− p.

With the initial belief of the state and the transition probabilities we can compute the

probability that the system will be at some state at time n ≥ 0.

Moreover, we assume that the defender implements the same strategy in every state, that

is, vD(S0) = vD(S1) = vD. Thus, the defender aims to minimize the expected discounted

costs. At time n > 0, the expected cost is

ĴDn (vA, vD) = P(xn = S0)lD(S0, vA, vD) + P(xn = S1)lD(S1, vA, vD) + βĴDn−1(vA, vD) (5.7)

with the initial expected cost

ĴD0 (vA, vD) = P(x0 = S0)lD(S0, vA, vD) + P(x0 = S1)lD(S1, vA, vD)

= gd(va)P(x0 = S0) + Cd(vd) + Cp(vp).

The following result shows the defender’s infinite horizon cost

3In the experiments we find that the approximate solution is almost equal to the optimal solution.
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Theorem 3. If P(x0 = S0) = 1/2, then the defender’s cost function with partial information

is

ĴD(vA, vD) =
gd(va)

1− β γ(vA, vD) +
Cd(vd) + Cp(vp)

1− β
where

γ(vA, vD) =

 1
1−β

δ
π+δ if 0 < π + δ < 2

1
2

1
1−β otherwise

and δ = δ(vh, vp) and π = π(va, vd).

The proof of this Theorem is in Appendix A.3.

To guarantee convergence of the cost function we assume that P(x0 = S0) = 1/2. Also,

observe that the cost function has a discontinuity at π(va, vd) = δ(vh, vp) = 0.

The optimal defense strategy vD is the solution to the following optimization problem

Minimize
vD

ĴD(vA, vD)

subject to

vD = (vd, vp),

vp, vd ∈ [0, 1].

5.5 Attack-Defense Game

We have solved the optimal investment allocation problem for attackers and for defenders

(with full and partial information), independently from each other. We now take into account

that the investment choices of one party will be used by the other to change their own

strategy. In particular, we model the investment choices between attackers and defenders as

a simultaneous game between them (with full and partial information).

5.5.1 Defender with Full Information

We consider a simultaneous game to describe the interactions between attacker and defender.

In this game, the defender selects the security scheme vD = (vd, vp) and the attacker selects

its attack strategy vA = (va, vh). The cost function of the attacker and the defender are

JA(x0, vA, vD) and JD(x0, vA, vD), respectively.

We define the defender’s cost functions as

Cd(vd) = kd(e
vd ln 2 − 1),
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and

Cp(vd) = kp(e
vp ln 2 − 1).

These cost functions satisfy Ci(0) = 0 and Ci(1) = ki. The loss function is defined as

gd(va) = klva. In the simulations, unless stated otherwise, we use the following parameters:

kl = 4, kd = 4, and kp = 3.

Below we analyze the Nash equilibrium that arises from the interaction between the

attacker and the defender as a function of the defender’s losses (gd(·)), and the cost of

detection (cd(·)) and prevention (cp(·)).

Equilibrium as a Function of gd(·)

Here we consider the defender’s loss parameter kl in the interval [0, 15] and observe the

optimal defense strategy when va = 1 and vh ∈ {0, 1}. The simulations in Fig. 5.3 show

that system has a pure Nash equilibrium when the defense strategy allows looking for new

vulnerabilities,4 that is, when vh = 1. If the defense strategy manages to make unprofitable

attacks (vh = 0), then the system does not have an pure Nash equilibrium. In such case, if

vh = 1, then the response of the defender will force the attacker to make vh = 0. However, if

vh = 0, the attacker will have zero investment in prevention (vp = 0), which encourages the

attacker to make vh = 1, repeating the cycle again.

Equilibrium as a Function of cd(·)

In this case, we analyze the response of the players when kp = 3 and kd is in the interval

[0, 7.5]. The simulation results in Fig. 5.4 show that if vh = 1, then it is always optimal

to invest in prevention, even when detection is free (kd = 0). Also, there is no pure Nash

equilibrium, because the defense strategy when vh = 1 will make attacks unprofitable, while

if vh = 0 the response of the defender allows looking for vulnerabilities.

Equilibrium as a Function of cp(·)

We analyze the response of the players when kd = 3 and kp is in the interval [0, 7.5]. The

simulations in Fig. 5.5 show that if vh = 1, then investing in detection is optimal even when

kp = 0. Also, the system has two Nash equilibria: i) if the defense strategy allows looking new

vulnerabilities; ii) if the investment in prevention is large and avoids looking for vulnerabilities.

The Nash equilibrium when vh = 1 (vh = 0) is reached for large (small) values of kp.

4Intuitively, there is a Nash equilibrium when the defender’s strategy with vh = 1 (vh = 0) remains below
(above) the attacker’s decision boundary.
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Figure 5.3: Change in the defender’s strategy with the cost of losses, kl, when va = 1 and
vh = {0, 1}. The system has a pure Nash equilibrium when the defense strategy allows
looking for new vulnerabilities (vh = 1).

Equilibrium with Budget Constraints

Let us consider a case in which the defender has limited resources to implement his strategy.

Here, the total investment should be less or equal than some budget E ≥ 0, that is,

Cd(vd) + Cp(vp) ≤ E.

With this restriction, the defender’s optimal strategy becomes

Minimize
vD(S1),vD(S0)

JD(S0, vA, vD(S0)) + JD(S1, vA, vD(S1))

subject to

Cd(vd) + Cp(vp) ≤ E,

vD(S0) = (0, vp),

vD(S1) = (vd, 0),

vd, vp ∈ [0, 1].

Fig. 5.6 shows the optimal strategy of the defender as a function of the budget E, when

kd = kp = 3, kl = 9, and E ∈ [0, kp + kd]. Observe that with a limited budget (less than

the necessary to implement an optimal strategy) the defender’s optimal action prioritizes

66



www.manaraa.com

0 0.2 0.4 0.6 0.8 1

Effort detecting attacks (vd)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ff
or
t
p
re
ve
n
ti
n
g
at
ta
ck
s
(v

p
)

Defender’s actions as a function of Cd

va = 1

vh = 1

va = 1

vh = 0

Attacker’s decision boundary

Defender’s strategy with vh = 1

Defender’s strategy with vh = 0

Figure 5.4: Change in the defender’s strategy with the cost of detection, kd, when va = 1
and vh = {0, 1}. The system does not have a pure Nash equilibrium.

either detection or prevention, even though the cost function of both strategies is the same.

In particular, with a low defense budget it is better to invest all (or at least most) of the

resources in detection. As the budget increases it becomes better to invest more resources in

prevention. Without budget constraints, the investments vd and vp are equal, because the

costs of detection and prevention are equal.

5.5.2 Defender with Asymmetric Information

We now turn our attention to the case where the defender has asymmetric information.

We use the same loss and cost functions we used in the last section for the case with full

information.

Equilibrium as a Function of gd(·)

Fig. 5.7 shows the optimal action of the defender when kl ∈ [0, 15]. When vh = 1, the

defender’s best action is to either invest only in detection or invest in complete protection

with some level of detection. Large investments in protection are optimal when attacks cause

high losses. For lower losses, the best strategy is to invest only in detection (although the

investment is relatively low).
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Figure 5.5: Change in the defender’s strategy with the cost of prevention, kp, when va = 1
and vh = {0, 1}. The system has two Nash equilibria: i) if the defense strategy allows
looking for new vulnerabilities; ii) if the investment in prevention is large and avoids searching
vulnerabilities.

On the other hand, if vh = 0, the best action is to invest few resources in detection. The

rationale is that although the attacker might not look for vulnerabilities, he can exploit them

if he has the opportunity. Hence, it is necessary to guarantee some detection. The game has

a Nash equilibrium when vh = 0 and vp = 0.

Equilibrium as a Function of Cd(·)

Fig. 5.8 shows the defenders best action when kp = 3 and kd ∈ [0, 7.5]. In this case the

defender invests only in detection, regardless of its cost. Nevertheless, the investment is larger

when the cost is lower. Surprisingly, for large Cd the optimal strategy is not invest in security

at all, that is (vd = 0 and vp = 0). The game has a Nash equilibrium when vh = 1 and vp = 0.

Equilibrium as a Function of Cp(·)

Fig. 5.9 shows the defender’s best action when kd = 3 and kp ∈ [0, 7.5]. In this case the

defender has two optimal actions. When vh = 1 the defender’s best action is to either invest

only in detection or invest in complete prevention with some level of detection. The defender
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Figure 5.6: Change in the defender’s strategy with the budget constraint E. For a small
budget the best strategy is to prioritize detection over prevention (or vice versa).

chooses vp = 1 when the cost of prevention is small. However, for large costs of prevention,

the defender invests only in detection.

When vh = 0, the defender invests in prevention if the cost is low, otherwise the investment

is minimum; however, it invests roughly the same amount in detection, regardless of the cost

Cp(·). The game has a Nash equilibrium when vh = 0 and vp = 0.

Equilibrium with a Budget Constraints

Similar to the case with full information, here we define a constraint in the expenses in

security:

Cd(vd) + Cp(vp) ≤ E.

Thus, the defender’s optimization problem becomes

Minimize
vD

ĴD(vA, vD)

subject to

Cd(vd) + Cp(vp) ≤ E

vD = (vd, vp)

vd, vp ∈ [0, 1]
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Figure 5.7: Change in the defender’s strategy with the cost of losses, kl, when va = 1 and
vh = {0, 1}. The system has a pure Nash equilibrium when the defense strategy allows
searching new vulnerabilities (vh = 1 and vp = 0).

Fig. 5.10 shows the optimal defense when kd = kp = 3, kl = 9, and E ∈ [0, kp + kd]. As in

the case with full information, the optimal strategy with a low budget is to invest only in

detection. However, as the budget increases, the investment in detection decreases and the

investment in prevention increases. Due to the discontinuity of the cost function, for large

budgets it is optimal to invest a small amount in detection.

5.6 Conclusions

In this work we find that the attacker’s optimal strategy is binary, that is, either attack (or

hack) with the maximum intensity or not at all. When the defender observes the system’s state,

we found two Nash equilibria, which allows or deters the attacker to discover vulnerabilities.

Moreover, the optimal defense strategy has always a combination of both detection and

prevention, even when the cost of prevention or detection is zero. Hence, no strategy alone

minimizes the cost for the defender, although in some cases investing only in prevention can

avoid hacks (see Fig. 5.2). In the experiments the investment in prevention and detection

increases with the budget. We also find that with few resources the best strategy is to

prioritize detection over prevention.
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Figure 5.8: Change in the defender’s strategy with the cost of detection, kd, when va = 1
and vh = {0, 1}. The game has a Nash equilibrium when vh = 1 and and vp = 0.

With limited information we found only one Nash equilibrium, in which the attacker

has incentives to discover vulnerabilities, that is, the actions of the defender do not prevent

attacks. Also, the defender tends to invest resources only in detection technologies. An

exception occurs when either the cost of prevention is low or the losses are high; in such cases

the defender tends to invest in maximum prevention. Moreover, similar to the case with full

information, with a small budget the best strategy is to prioritize detection over prevention.

In contrast, the investment in detection decreases for larger budgets.

5.6.1 Future Directions

In practice the defender usually ignores risk of security breaches, due to limited information

to estimate the transition probabilities of the Markov process in Fig. 5.1. Therefore, it is

necessary to develop techniques to deal with such uncertainties. In particular, the defenders

could estimate the risk of breaches through security audits.

Also, it would be interesting to analyze how to deal with the negative effects of uncertainties.

In particular, uncertainties about the system’s state have a negative impact on the security

investments. For example, in our experiments the defender with asymmetric information

and limited budget invests less resources in detection (see Fig. 5.10). The government could

design economic incentives to correct the negative behaviors that arise due to uncertainties.
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Figure 5.9: Change in the defender’s strategy with the cost of prevention, kp, when va = 1
and vh = {0, 1}. The game has a Nash equilibrium when vp = 0.
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6.1 Introduction

When the adversaries pursue some economic benefit it is possible to design incentives to reduce

the potential rewards that motivate their attacks. This idea follows from the seminal paper

of Gary Becker on the economics of crime and further developments in information security

(Becker, 1968; Schechter and Smith, 2003). For instance, (Barreto and Cárdenas, 2015a)

studies a detection scheme and penalties to prevent false information attacks on smart grids.

Another study (Barreto and Cárdenas, 2016) investigates how traditional contracts allowed

electric tower repair companies to profit by sponsoring more attacks on electric transmission

towers, and then shows a contract scheme that reduces the incentives of malicious repair

companies. In such cases, knowing the adversary’s goal is crucial to make the system a less

attractive target for attackers.

However, incentives can fail to prevent attacks when he adversary pursues either a non-

economic or a unknown goal.1 In such cases the defender has to rely on risk management

strategies to minimize the expected losses from attacks. Risk management seeks to either

mitigate or transfer the risk of hazardous events. Risk mitigation includes detection and

prevention of cyber attacks, while risk transfer includes mechanisms like cyber insurance,2

where the defender transfers the risk to another party.

In this chapter we analyze how defenders can manage their investments efficiently to

protect themselves against cyber-attacks. We propose a Markov decision process to model the

system’s exposure to attacks as a function of the investment in risk management strategies.

In particular, we consider three risk management options: attack-detection (e.g., investing in

intrusion detection systems), attack-prevention (e.g., investing in access control technologies),

and cyber insurance. With this model we find the best investment strategy that reduces

losses in the long term.

Our model has two key characteristics: First, we capture the fact that attack-attribution is

a difficult problem assuming that the defender cannot penalize the attacker (adversaries often

remain unknown or reside in countries where thy cannot be prosecuted). Second, the Markov

process allows us to analyze the interaction among individuals, considering restrictions in

their actions (Barreto and Cárdenas, 2017).

1Economic incentives can fail if the adversary pursues political interests, such as hacktivism, espionage,
sabotage, terrorism, or war.

2Insurance against losses caused by cyber attacks.
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Our work is closely related to (Preciado et al., 2014; Rasouli et al., 2014); however, we

depart from them in that 1) we focus on the strategic aspect of the adversary, and 2) we

consider the evolution of threats in time. Specifically, cyber-weapons become ineffective once

the vulnerabilities are discovered and fixed by software vendors, forcing the attacker to find

new ones. Moreover, in this work we extend our previous work (Barreto et al., 2017) by

allowing the defender to invest in insurance.

The chapter is structured in the following way: Section 6.2 provides an introduction to

the concept of insurance. Section 6.3 introduces the Markov decision process that models the

exposure to cyber risks. Section 6.4 deals with the optimal investment in risk management

with full and limited information. Section 6.5 shows an example of subsidies to incentivize

the adoption of insurance and thus improve security investments in critical infrastructures.

We finish the chapter with closing remarks in Section 6.6.

6.2 The Role of Insurance in Risk Management

Insurance is a mechanism in which an agent (insured) transfers its risk3 to another party

(insurer) (Bernstein, 1996). The insured pays periodically some premium P to the insurer and

receives in exchange an indemnity I when an incident occurs causing losses L. The premium

should be enough to cover claims and operation costs of the insurer; a common benchmark is

the fair premium principle,4 which defines the premium as the expected payments of claims

(P = E[I]) (Arrow, 1971; Mikosch, 2006). With a fair premium the accumulated payments

equal the total claims (in the long run). One benefit of insurance is that the insured pays

only a fraction of losses, rather than the total amount up front.

The insurer can reduce the variance of the average claims by collecting the risk of many

customers in a pool, which allows a more precise calculation of the premium. Thus, insurance

has a social nature and needs the participation of many individuals. In some cases this large

participation arises organically, but in others, participation in insurance markets requires

the government’s intervention (e.g., governments often push regulations to improve the

participation in car, earthquake, and health insurances).

In particular, due to the general underinvestment to protect critical infrastructures, the

U.S. government is interested in promoting insurance, because successful insurance industries

can incentivize firms to invest in mitigation of risk (when this leads to reductions in the

3Risk is the uncertainty associated with an outcome.

4Fair premiums do not account for the risk of the insurer and can lead to bankruptcy in practice.
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π(vd)(1− vI)1− π(vd) 1− δ(vp)

Figure 6.1: Markov process that describes changes in the security of the system. The system
has a vulnerable state s0 and two secure states s1 and s2, which differ in that s1 occurs with
insurance.

premium (Ehrlich and Becker, 1972)). Therefore, cyber insurance is expected to play a role

improving the security of critical infrastructures and managing cyber risks of (potentially

catastrophic) cyber attacks, as in the case of natural catastrophic events (Kunreuther, 2015).

6.3 Model

We assume that the defender can manage the risk of a system by investing in mitigation

and transferring the risk. Mitigation involves investing in prevention (e.g., encryption and

authentication) and detection (e.g., intrusion detection systems and audits) to reduce the

success and damage of attacks. Moreover, we assume that there is a market of cyber insurance

that offers coverage for cyber threats.

The defender can choose the degrees of investment in both prevention and detection,

denoted by vp ∈ [0, 1] and vd ∈ [0, 1], respectively. In contrast, we assume that the insurance’s

cost is fixed and that the defender can decide only whether or not to purchase it. Thus,

the decision to purchase insurance is denoted by vI ∈ {0, 1}. In summary, the action of the

defender is a vector v = (vp, vd, vI) ∈ A, where A is the set of possible actions, defined as

A = [0, 1]2 × {0, 1}.
We consider a system with three states S = {s0, s1, s2}, namely an insecure state s0 and

two secure states s1 and s2 (see Fig. (6.1)). In the insecure state s0, the system is susceptible

to attacks; e.g., an attacker knows a vulnerability of the system and is able to exploit it. The

system cannot suffer attacks in any of the secure states; however, in s1 the defender receives

an indemnity from the insurer. Thus, when the defender purchases insurance, the system can
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go from s0 to s1 and then to s2 (the indemnity is paid only once) and without insurance the

system goes from s0 to s2.

Fig. 6.1 shows the state transitions of the system.5 The transition from a secure state

(s1 or s2) to the insecure state s0 occurs with probability δ(vp), which increases with low

investments in prevention. On the other hand, the transition probability from the insecure

state s0 to one of the secure states depends on both the investment in detection and insurance.

In particular, the system jumps from s0 to s1 with probability π(vd) only if the defender

pays a premium in advance (i.e., vI = 1 in s0); otherwise, the system jumps from s0 to s2

with probability π(vd). The probability of detecting an attack increases with investments in

detection technologies.

Assumption 4. The probability of detection δ : [0, 1]→ [0, 1] is a convex decreasing continu-

ous function and satisfies δ(0) = 1 and δ(1) = ε.

The probability of finding a vulnerability π : [0, 1] → [0, 1] is a concave increasing

continuous function that satisfies π(0) = ε and π(1) = 1.

We assume that new vulnerabilities are identified eventually even if the defender implements

maximum protection, i.e., δ(1) = ε > 0. Also, vulnerabilities can be discovered even if the

attacker does not use them (Axelrod and Iliev, 2014), then, π(0) = ε > 0.

In this model the state transitions occur in discrete time instants 0, T, 2T, . . ., where T is

the time period between transitions.

The cost of operating the system depends on the losses caused by attacks and the cost of

the risk management strategy. We define the cost for the defender (in a single time period)

as

l(x, v) =


L+ Cp(vp) + Cd(vd) + P (x, v), if x = s0

Cp(vp) + Cd(vd) + P (x, v)− I, if x = s1

Cp(vp) + Cd(vd) + P (x, v), if x = s2,

where x ∈ S is the state of the system, v = (vp, vd, vI) is the action of the defender, L is are

the losses due to an attack, Cp(vp) is the cost of prevention, Cd(vd) is the cost of detection, I

is the indemnity paid by the insurer, and P (x, v) is a function that calculates the premium.

5We modify the model in (Barreto et al., 2017), which describes the interaction among an attacker and a
defender, adding a state to consider the effect of cyber insurance. Also, we assume that the adversary attacks
the system regardless of the defense strategy; therefore, in this case we do not model the attack strategy as a
variable.
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We assume that the defender seeks to maximize its discounted utility (Samuelson, 1937).

In this case, we consider the following utility function for the defender:

H(x, v) = U(w − l(x, v)), (6.1)

where w is some income and U : R→ R is a concave increasing continuous function.6

6.3.1 Asymmetries in Information

Below we consider two situations: the defender either fully observes the state of the system, or

has limited information about the state of the system. Although the former case is unrealistic

in most scenarios, it provides a benchmark of the ideal defense strategy.

Full Information

In this case, the defender (and the insurer) observe the state of the system. In other words,

the defender knows whether the attacker possess a cyber weapon that endangers the system,

but the precise vulnerability of the system is unknown. In consequence, the defender can

adjust its risk management strategy according to the current state.

Limited Information

In this case the defender does not know the true current state and therefore, he has to

implement the same risk management strategy regardless of the state of the system. Nonethe-

less, we assume that the defender knows the characteristics of the system (e.g., transition

probabilities), and therefore, he can estimate the probability that the system is in a particular

state. The following result shows the stationary distribution of the Markov decision process

when the defender implements a strategy v.

Lemma 3. The stationary distribution ρ(v) = [ρ0(v), ρ1(v), ρ2(v)], where ρi(v) = P[x = si|v],

of the Markov process depicted in Fig. 6.1 is equal to

ρ(v) =

ρI(v), if vI = 1

ρNI(v), if vI = 0,

6 We make this assumptions because only risk averse users (who cave concave utility functions) purchase
insurance.
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where the stationary distribution with insurance is

ρI(v) =
(

δ(vp)
π(vd)+δ(vp)

π(vd)δ(vp)
π(vd)+δ(vp)

π(vd)(1−δ(vp))
π(vd)+δ(vp)

)
(6.2)

and the stationary distribution without insurance is

ρNI(v) =
(

δ(vp)
π(vd)+δ(vp)

0 π(vd)
π(vd)+δ(vp)

)
, (6.3)

if π(vd) + δ(vp) 6= 0.

Sketch proof. Let us begin with the case with insurance. Here the transition probability

matrix of the system is

TPI(v) =

1− π(vd) π(vd) 0

δ(vp) 0 1− δ(vp)
δ(vp) 0 1− δ(vp)

 .

It can be verified that Eq. (6.2) satisfies

ρI(v) = ρI(v)TPI(v),

if π(vd) + δ(vp) 6= 0. Now, the transition probability matrix of the system without insurance

is

TPNI(v) =

1− π(vd) 0 π(vd)

δ(vp) 0 1− δ(vp)
δ(vp) 0 1− δ(vp)

 .

It can be verified that the stationary distribution ρb(v) in Eq. (6.3) satisfies

ρNI(v) = ρNI(v)TPNI(v)

if π(vd) + δ(vp) 6= 0.

6.3.2 Insurance

We assume that the defender can purchase insurance at any moment and that the premium

is calculated based on the probability that an attack occurs during the next time period.

Hence, based on the fair premium principle, the premium should be calculated using the

probability of reaching the state s1 in the next time period, that is,

P (x, v) = I · P[Claim|x, v] = I · P(xn+1 = s1|xn = x, v),

where x is the current state and v is the strategy of the defender. Below we consider the

cases with asymmetries in information.
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Insurance with Full Information

Since the state of the system is known, we know that

P(xn+1 = s1|xn = x, v) =

π(vd)1vI=1, if xn = s0

0, otherwise,

where 1vI=1 is the indicator function. Hence,

P (x, v) =

I π(vd) if x = s0 and vI = 1

0, otherwise.

Thus, the defender pays a premium only in s0.

Insurance with Limited Information

In this case, we assume that the defender can observe transitions from s0 to the states s1 and

s2, which occur when an attack is detected. Thus, the defender can make claims of losses to

the insurer (although the system’s state becomes uncertain in the following time periods).

According to Lemma 3, the probability of a claim in the next time period is equal to

P[Claim|v] = P(xn+1 = s1|xn = s0, v)P(xn = s0) = ρ1(v).

Consequently, the fair premium for the case with limited information is

P (x, v) = P (v) = I · P(Claim|v) = Iρ1(v). (6.4)

In this case the premium does not depend on the state, that is, P (v) = P (x, v).

6.3.3 Notes on the Model

We assume that only one transition occurs during each time period. For example, an attack

during the kth time period can be discovered only at the beginning of the k + 1th time

period. Furthermore, we assume that losses are constant on every time period; however they

accumulate while the attack remains undetected. This captures the intuition that attacks

cause large or small losses depending on the duration of the attack.

We assume that the insurer gives indemnities when the insured shows precise evidence

of a cyber attack, that is, when the system jumps from s0 to s1. This assumption agrees

with Beck’s definition of modern risks (or man-made risks) (Beck, 1992). According to Beck,

people cannot determine their exposure to modern risks through simple inspection, but

require the evaluation of an expert. According to this, cyber-insurance makes sense only

when the defender invests in attack-detection mechanisms that allows him to make claims.
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6.4 Optimal Defense Strategy

6.4.1 Full Information

We consider an infinite decision problem in which we want to find the control policy V =

{v0, v1, v2, . . . , vn, . . .} (where vk ∈ A) that maximizes the performance criterion

J(x0, V ) = H(x0, v0) + βEVx0
{
H(x1, v1)+

EVx1
{
H(x2, v2) + · · ·+ βEVxn−1

{H(xn, vn) + . . .}
}}

,

where β ∈ [0, 1) is a discount factor and xk and vk are the state and the defender’s strategy

at time k = 0, 1, 2, . . ., respectively. Since we have an infinite horizon problem, the cost

functional can be rewritten as

J(x0, V ) = H(x0, v0) + βEVx0 {J(x1, V )} . (6.5)

In this case, the losses of the defender are bounded by

l ≤ l(x, v) ≤ l,

where l = Cp(0) + Cd(0)− I and l = L+ Cp(1) + Cd(1) + I. Thus,

w − l ≤ w − l(x, v) ≤ w − l.

Here we assume that H(x, v) (see Eq. (6.1)) is positive and bounded for all x ∈ S and v ∈ A,

which implies that the cost functional in Eq. (6.5) is bounded.

In this infinite-horizon problem the optimal control policy is stationary, which means that

vk = vk+1 = v, for k ≥ 0. Hence, the optimal policy has the form V = {v}. Now, using the

optimality principle (Hernández-Lerma and Lasserre, 2012; Bensoussan, 2011) we can define

the following value function:

u(x0) = sup
v
J(x0, v) = sup

v

{
H(x0, v) + βEvx0 [u(x1)]

}
The expectation of the value function u(·) is equal to

Evx0 [u(x1)] = E[u(x1)|x0, v] = {u(s0) + π(vd) (u(s1)vI + u(s2)(1− vI)− u(s0))}1x0=s0
+ {u(s2) + δ(vp)(u(s0)− u(s2))}1x0 6=s0 .
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Let us express the value function as

u(x) = sup
v
{Ψ(x, v)} ,

where

Ψ(x, v) = H(x, v) + βE[u(xn+1)|xn = x, v].

With full information the optimal strategy consists in choosing 1) prevention only in the

secure states s1 and s2 and 2) detection and insurance only in state s0.

6.4.2 Limited Information

Since the defender cannot observe the state of the system, the investment is independent of

the vulnerabilities of the system. Hence, in the kth the benefit of the defender is the expected

benefit in the current time period plus the expected future earnings. The discounted benefit

function becomes

Ĵk(v) = E[H(xk, v)|v] + βĴk+1(v),

where xk is the state of the system in the kth period. We know that the sequence {Ĵk}
converges to some cost function Ĵ because H(·) is bounded. Thus,

lim
k→∞

Ĵk(v) = Ĵ(v) = E[H(x, v)|v] + βĴ(v).

From the previous equation we can rewrite the cost function as

Ĵ(v) = E[H(x, v)|v]/(1− β),

which is equivalent to

Ĵ(v) = ρ(v)
(
M(v), N(v), G(v)

)>
/(1− β),

where ρ(v) is the stationary probability distribution for the case with asymmetric information

(see Lemma 3), M(v) = H(s0, v), N(v) = H(s1, v), and G(v) = H(s2, v).

The next result shows sufficient conditions in which the defender with limited information

about the state would (or would not) purchase insurance.

Theorem 4. Let us consider an insurance with premium P̂ and indemnity I. If the premium

is higher than the fair premium, that is,

ρ1(v
1)I < P̂ ,
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then the defender rejects insurance. Furthermore, if

ρ1(v
0)Ik1(v

0)/k2(v
0) > P̂ ,

then the defender purchases insurance, where k1(v) = U̇(a(v)+I−P̂ ), k2(v) = U̇(a(v)−L−P̂ ),

a(v) = w− cp(vp)− cd(vd), and v1 and v0 are the optimal actions with and without insurance,

respectively.

Proof. Let A0 = [0, 1]2 × {0} and A1 = [0, 1]2 × {1} be the set of possible actions when the

defender refuses (vI = 0) or uses insurance (vI = 1), respectively. Thus, we can express the

problem of finding the optimal investment as

max
v∈A

Ĵ(v) = max {Γ0,Γ1} , (6.6)

where

Γ0 = sup
v∈A0

{
Ĵ(v)

}
= Ĵ(v0)

and

Γ1 = sup
v∈A1

{
Ĵ(v)

}
= Ĵ(v1),

were v0 = (v0p, v
0
d, 0) and v1 = (v1p, v

1
d, 1) are the optimal strategies with and without insurance,

respectively. From Eq. (6.6) we know that an individual would prefer (reject) insurance if

Γ1 − Γ0 is greater (lower) than zero. Our purpose is to find boundaries of the difference

Γ1 − Γ0 that allow us to determine the conditions to use or reject insurance.

Let us define the suboptimal actions ṽ0 = (v0p, v
0
d, 1) and ṽ1 = (v1p, v

1
d, 0). Now we can find

the following boundaries of Γ1 − Γ0:

Ĵ(ṽ0)− Ĵ(v0) ≤ Γ1 − Γ0 ≤ Ĵ(v1)− Ĵ(ṽ1). (6.7)

Let us consider first the upper bound in Eq. (6.7), which is equivalent to

Ĵ(v1)− Ĵ(ṽ1) =
ρ(v1)

1− β

M(v1)−M(ṽ1)

N(v1)−G(ṽ1)

G(v1)−G(ṽ1)

 . (6.8)

Since U(·) is concave, the inequality

U(µ− σ) ≤ U(µ)− σU̇(µ)
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is satisfied for every real numbers µ and σ. With the previous inequality we can find the

following upper bound of Eq. (6.8)

Ĵ(v1)− Ĵ(ṽ1) ≤ ρ(v1)

1− β

−P̂ U̇(a(v1)− L)

(I − P̂ )U̇(a(v1))

−P̂ U̇(a(v1))

 , (6.9)

where a(v) = w − cp(vp) − cd(vd) and a(v1) = a(ṽ1). Since U(·) is concave increasing, we

know that U̇(·) is positive decreasing; hence, U̇(a(v1)− L) ≥ U̇(a(v1)). Thus, we can replace

U̇(a(v1)− L) by U̇(a(v1)) in Eq. (6.9) to obtain the following upper bound

Ĵ(v1)− Ĵ(ṽ1) ≤ U̇(a(v1))

1− β (ρ1(v
1)I − P̂ ).

Thus, if ρ1(v
1)I < P̂ , it is not convenient for the defender to purchase insurance. In other

words, the defender does not accept an insurance that charges more than the fair premium

(notice that ρ1(v
1)I is equal to the fair premium in Eq. (6.4)).

Let us consider now the lower bound of Eq. (6.7):

Ĵ(ṽ0)− Ĵ(v0) =
ρ(v0)

1− β

M(ṽ0)−M(v0)

N(ṽ0)−G(v0)

G(ṽ0)−G(v0)

 . (6.10)

We use the following approximation of the utility function:

U(µ− σ) ≥ U(µ)− σU̇(µ− σ). (6.11)

Thus, applying Eq. (6.11) in Eq. (6.10) we obtain the following lower bound

Ĵ(ṽ0)− Ĵ(v0) ≥ ρ(v0)

1− β

 −P̂ U̇(a(v0)− L− P̂ )

(I − P̂ )U̇(a(v0) + I − P̂ )

−P̂ U̇(a(v0)− P̂ )

 .

We can replace −U̇(a(v0)− P̂ ) and −U̇(a(v0) + I − P̂ ) with −U̇(a(v0)− L− P̂ ) to obtain

the lower bound

Ĵ(ṽ0)− Ĵ(v0) ≥ 1

1− β
(
ρ1(v

0)Ik1(v
0)− Pk2(v0)

)
,

where k1(v
0) = U̇(a(v0) + I − P̂ ) and k2(v

0) = U̇(a(v0)− L− P̂ ). Hence, the defender will

purchase insurance if ρ1(v
0)Ik1(v

0)− P̂ k2(v0) > 0.
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Since U̇(·) is convex decreasing, then k1 is lower than k2. Thus, the premium must be

strictly larger than the fair premium to guarantee that the defender purchases insurance.

Hence, it is necessary to provide subsidies to improve the adoption of insurance (analyzed in

Section 6.5). Below we illustrate the optimal investment in protection with an example.

Example 6. We define the transition probabilities as

π(vd) =

(
e1 − e(1−vd)
e1 − 1

+ ε

)
1

1 + ε

and

δ(vp) =

(
e(1−vp) − 1

e1 − 1
+ ε

)
1

1 + ε
.

Thus, ε ≤ π(z), δ(z) ≤ 1, for z ∈ [0, 1]. On the other hand, we use the following cost functions

cd(vd) = kdfc(vd) and cp(vp) = kpfc(vp),

where fc(·) is a concave function defined as

fc(z) = ez log 2 − 1.

This function satisfies fc(0) = 0 and fc(1) = 1. Furthermore, we define U(z) = log z. In the

simulations we select kd = kp = 3, β = 0.75, ε = 0.1, L = 6, and w = 746.5. In this case we

define an insurance with indemnity I = 3 and premium

P (v) = ηIρ1(v), (6.12)

with 0.5 ≤ η ≤ 2. We introduce the parameter η to observe the response of the defender to

policies with costs above and below the fair premium, which corresponds to η = 1.

Fig. 6.2 shows the optimal strategy of the defender as a function of η. In this example,

a defender with full information purchases insurance with a cost below the fair premium

(η ≤ 0.7). Furthermore, a defender with limited information accepts policies with a cost close

but not superior to the fair premium (as predicted by the Theorem 4). This suggests that

the insurance becomes more important as the uncertainty of the user increases, because the

defender is willing to pay a higher premium. Moreover, with full information the defender

invests most of its resources in detection. With limited information, when insurance is not

used, the defender prioritizes prevention over detection; however, the opposite occurs when

attacker has insurance.
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Figure 6.2: Optimal strategy with and without full information for different cost of the
premium (see Eq. (6.12). With limited information the defender accepts higher premiums,
which shows the importance of insurance in situations with uncertainty.

6.5 Subsidies on Indemnities

The results of the previous section show that the defender purchases insurance when the cost

is lower than the fair premium. However, insurers often add a safety loading factor γ > 0 to

the fair premium, so they charge

P̃ (v) = (1 + γ)ρ1(v)I(v), (6.13)

where I(v) is the indemnity paid by the insurer. From Theorem 4 we know that the defender

needs incentives to purchase an insurance policy with the premium in Eq. (6.13), since it is

larger than the fair premium.

In this section, we show the effect of a subsidy Ω(v) granted to a defender (who has

insurance) when an accident occurs. We assume that the subsidy is an indemnity that the

defender receives from the government. Hence, the total indemnity of the defender becomes

Ĩ(v) = I(v) + Ω(v). (6.14)

With the premium in Eq. (6.13) and the indemnity in Eq. (6.14), the defender purchases

insurance if (see Theorem 4)

ρ1(v)Ĩ(v)k1(v)/k2(v) > P̃ .
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Assuming that U̇(z) = 1/z, the previous expression is equivalent to

I(v) + Ω(v) > (1 + γ)I(v)
a(v) + I(v) + Ω(v)− P̃ (v)

a(v)− L− P̃ (v)
.

Thus, the subsidy must satisfy:

Ω(v) > I(v)
(1 + γ)r(v)− b(v)

b(v)− (1 + γ)I(v)
, (6.15)

where

r(v) = a(v) + I(v)− P̃ (v)

and

b(v) = a(v)− L− P̃ (v).

Example 7. In this experiment we use a loading factor γ = 0.5 and for simplicity we consider

subsidies that satisfy Eq. (6.15) with equality. Moreover, we consider two alternatives for

the insurance’s indemnity I(v), namely full and limited coverage. With full coverage the

indemnity covers the losses accumulated during the attack. Thus, if the system stays in s0

during m time periods, then the total losses are L ·m. For simplicity we define the indemnity

with unlimited coverage as

I(v) = L/π(vd),

where 1/π(vd) is the expected number of periods that the system remains in the state s0 (i.e.,

the expected duration of an attack). On the other hand, policies with limited coverage offer a

constant indemnity, in this case, we select I(v) = 3.

Fig. 6.3 shows the optimal defense strategy with subsidies. As we can see, the strategy is

different with full and limited coverage. On one hand, subsidies with limited coverage improve

the investment in detection and guarantee that the defender purchases insurance policies with

a loading factor γ. On the other hand, when the insurer offers full coverage, the defender

purchases insurance policies regardless of the cost (η); however, the defender also invests

less resources in detection and prevention. This occurs because subsidies with full coverage

create a problem of moral hazard, in which the defender does not has incentives invest in the

protection of the system. Fig. 6.3b shows that the subsidies granted with full coverage are at

least 1010 times the subsidies granted with limited coverage.
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(a) Optimal defense strategy.
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Figure 6.3: Defense strategy with subsidies and both full and limited coverage for different
cost premiums. Full coverage improves the adoption of insurance; however, the defender
looses incentives to invest in protection.
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6.6 Conclusions

We model the dynamic interaction between a defender and an attacker as a Markov process

and analyze the best defense strategy with asymmetric information. With limited information

the defender accepts insurance policies close to the fair premium, contrary to the case with

full information. Therefore, uncertainty makes insurance more attractive.

The introduction of insurance has the potential to improve the investment that firms

make in security. In particular, we find that the investments in detection improves with low

premiums, whereas investments in prevention increase when the premium exceeds a threshold.

Since the defender does not accept fair premiums, we propose a subsidy scheme to incentive

the adoption of insurance. We find that policies with unlimited indemnities create perverse

incentives that stimulate low investments in security. Therefore, incentives for insurance have

to be designed with care not to have negative consequences. We observe an example in which

policies with limited indemnities prevent the perverse incentives.
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CHAPTER 7

CONCLUSION

In this research we investigate the effect that economic policies have in the security of critical

infrastructures, in particular, the power grid. We refer to economic policies as mechanisms

to allocate resources, such as contractual rules, markets, and investment strategies. We

hypothesized that that these schemes affect the security of CPSs, since they impact the profit

and difficulty to implement attacks.

We found that economic policies can affect the security of systems in many ways. First,

in Chapter 3 we learned that parties involved in the protection of systems can leverage the

anonymity of attacks to profit sponsoring attacks. Nevertheless, an appropriate design of

the protection policies can prevent such situations. Second, in Chapter 4 we found that

the structure of power markets can affect both attackers and defenders. In particular, with

distributed systems we can increase the difficulty to implement attacks; however, it becomes

more difficult to detect and penalize attacks. Third, in Chapter 5 we found that, the defender

can prevent attacks event if he cannot penalize directly his adversaries. Furthermore, in

Chapter 6 we found that uncertainties make insurance more attractive; however, the defender

accepts insurance with cost lower than the fair premium. Also, insurance with subsidies and

full coverage can create perverse incentives that reduce investments in security.

From the cases analyzed we conclude that it is possible to improve the security of systems

through a careful design of economic policies. In particular, the the defender can prevent

attacks having into account the motivation and limitations of attackers. For instance, the

defender can prevent attacks by depleting the resources of its adversaries, without punishing

them directly. The models analyzed in this work capture general security issues and we believe

that our work can help to improve the security of CPSs from different types of adversaries.

The following are some areas for further research, necessary to apply our ideas in practical

scenarios.

7.1 Future Research

7.1.1 Optimal Design of Contracts

In the model of Chapter 3 a defender can design contractual policies minimizing the total

costs. For example, the defender can choose the number of companies and the lotteries to

assign contracts balancing the increasing costs of repair services and operational losses from
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attacks. If having a large pool of contractors increases excessively the repair costs, then it

would be convenient to have few companies and allow some attacks. Also, the contracts

should contemplate the possibility that multiple contractors can cooperate to defraud the

electric company.

7.1.2 Improve Detection of Attacks

In Chapter 4 we show how to detect attacks analyzing the market’s equilibrium. It is also

important to design schemes to detect malicious attacks, which cause peaks in demand. In

such cases the detection would need real time monitoring, because the attackers leverage

the physical dynamics of the system (rather than its equilibrium) to cause damage (Barreto

et al., 2014, 2013). Moreover, it would be interesting to explore how to improve the detection

of attacks using honeypots and intrusion detection systems.

7.1.3 Regulation on Security Protection

Uncertainties about the system’s state have a negative impact on the security investments

(see Section 5.5). For example, in our experiments a defender with asymmetric information

invests less resources in detection (in comparison with the case with full information). A

regulator would design economic incentives to mitigate these negative behaviors.

7.1.4 Risk Estimation

Most works on risk management assume that risks can be estimated precisely, which implies

knowledge of the likelihood of attacks and their impact. However, estimating risks in practice

could be unfeasible due to the lack of information and the complex interrelations among

firms (Johnson et al., 2014). Furthermore, statistical properties change upon observation,

because rational individuals react to the acquired information. Hence, we need verify the

precision of risk estimations (or develop better risk measures1) and design risk management

strategies that consider uncertainties in the risk (Danıelsson, 2002; Danielsson, 2008). It

might be interesting to investigate how to use security audits to estimate the evolving risk of

companies. Particularly, an insurer should find a balance between the frequency of the audits

(which have some cost) and the accuracy of the risk estimations needed to offer policies with

some degree of confidence.

1(Danıelsson, 2002) shows that risk measures with value at risk (VaR) lack robustness and volatility, that
is, forecasts are inaccurate and fluctuate between time periods.
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APPENDIX

PROOFS ON THE OPTIMAL INVESTMENT IN PROTECTION

A.1 Attacker’s Optimal Strategy

Before finding the attacker’s optimal strategy we need the following results:

Lemma 4. The attacker’s cost functional is a contraction mapping.

Proof. Let us define the operator

T (u)(x) = inf
vA
{lA(x, vA) + βEvA,vDx {u(x′)}} .

We can find an upper bound of T (u)(x), called T̂ (u)(x), using some suboptimal action v̂:

T (u)(x) ≤ T̂ (u)(x) = lA(x, v̂) + βEv̂,vDx {u(x′)}.

Now, let us consider two cost functions u1(·) and u2(·) with optimal actions v1(·) and

v2(·), respectively. Now, the difference of the operator evaluated in each cost function is

upper bounded by

|T (u1)(x)− T (u2)(x)| ≤ |T̂ (u1)(x)− T (u2)(x)|.

If we select v̂ = v2, then the previous expression with x = S0 becomes

|T (u1)(S0)− T (u2)(S0)| ≤ β|π(va, vd)(u1(S1)− u2(S1))

+ (1− π(va, vd))(u1(S0)− u2(S0))|,

which has the following upper bound

|T (u1)(S0)− T (u2)(S0)| ≤ βπ(va, vd)|(u1(S1)− u2(S1)|
+ β(1− π(va, vd))|u1(S0)− u2(S0)|

Finally, since 0 ≤ π(va, vd) ≤ 1, we have

|T (u1)(S0)− T (u2)(S0)| ≤ βmax{|u1(S0)− u2(S0)|, |u1(S1)− u2(S1)|}.

Similarly,

|T (u1)(S1)− T (u2)(S1)| ≤ βmax{|u1(S0)− u2(S0)|, |u1(S1)− u2(S1)|}.

Thus,

||T (u1)(x)− T (u2)(x)||∞ ≤ β||u1 − u2||∞
Consequently, the cost functional is a contraction mapping.

92



www.manaraa.com

We use an iterative approximation of the attacker’s value function uA(x) (see Eq. (5.1))

to find the attacker’s optimal strategy. We define the approximation of the value function as

un+1(x) = inf
vn∈[0,1]

{lA(x, vn) + βEvn,vDx {un(x)}} , (A.1)

with un(x) → u(x) = uA(x), vn(x) → vA for all x ∈ S, where u0(x) = 0 and vn(x) =

(va,n(x), vh,n(x)). The approximations satisfy the following property:

0 ≥ u1(x) ≥ u2(x) ≥ . . . ≥ uA(x).

This iterative approximation is possible because uA(x) is a contraction mapping, which allows

us to use the Banach fixed point theorem (Banach, 1922).

The following result shows that the attacker’s value function is greater in the secure state.

Lemma 5. The iterative cost function at time k satisfies

uk(S0) ≤ uk(S1)

Proof. Let us assume by contradiction that un(S0) > un(S1). This implies that there exists

some time k such that uk(S0) ≤ uk(S1) and

uk+1(S0) > uk+1(S1). (A.2)

In particular, we can adjust u0(x) to guarantee that uk(S0) = uk(S1). Thus, from Eqs. (5.2),

(5.3), (5.4), (5.5), and (A.1) we know that

uk+1(S0) = inf
v
{C01v>0 − ga(v) + βuk(S0)} ≤ βuk(S0)

and

uk+1(S1) = inf
v
{Cv1v>0 + βuk(S1)} = βuk(S1).

Hence, uk+1(S0) ≤ uk+1(S1), which contradicts our initial hypothesis in Eq. (A.2), which

proves that uk(S0) ≤ uk(S1).

The following result shows that if an attack is profitable at the kth iteration, then it will

remain profitable in the next iterations.

Lemma 6. If va,k > 0 (or vh,k > 0) for some time k ≥ 1, then va,k′ > 0 (or vh,k′ > 0) for

all k′ > k.
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Proof. Since un → u as n→∞, un(x) ≥ u(x), and u0(x) = 0, we have

0 ≥ uk−1 ≥ uk ≥ uk+1. (A.3)

Let us assume that v(a,h),k > 0. This implies that attacks are profitable, that is, 0 > uk(x).

Now, if we select in the next time period va,k+1 = 0 or vh,k+1 = 0 results

uk+1(x) = βuk(x).

However, since uk(x) is negative we have uk(x) < uk+1(x), which contradicts Eq. (A.3).

In the following result we show that the attacker’s optimal strategy consists in attacking

with full intensity or not attacking at all.

Lemma 7. The strategy of the attacker is always either 1 or 0.

Proof. Let us show first that vh,k ∈ {0, 1}. First, if vh,k > 0 for some k, then from Eq. (A.1)

the optimal cost is

uk(S1) = min
v
{Cv + βuk−1(S1) + βδ(v, vp)(uk−1(S0)− uk−1(S1))} .

From Lemma 5 we know that uk(S0) ≤ uk(S1), thus, the difference of uk−1(S0) and uk−1(S1)

is negative. Since δ(·) is increasing in vh, then the optimal attack is vh,k = 1.

Now we will show that va,k ∈ {0, 1}. Observe that if va,k > 0 for some k, then the optimal

cost is

uk(s0) = min
v
{ΨS0,k(v, vd)} ,

where

ΨS0,k(v, vd) = C0 − ga(v) + βuk−1(S1) + β(1− π(v, vd))uk−1(S0).

Since ga(·) and (1 − π(v, vd)) are convex with respect to va, then ΨS0,k(v, vd) is concave

with its minimum at either 0 or 1 (recall that uk−1(S0) < 0). Let us consider the value of

ΨS0,k(v, vd) at the extremes:

ΨS0,k(0, vd) = C0 + βuk−1(S0)

and

ΨS0,k(1, vd) = C0 − ga(1) + βuk(S1)

From Eq. (A.1) we can extract the following properties

uk(S0) ≥ C0 − ga(1) + βuk−1(S0)
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and

uk(S1) ≤ βuk−1(S0).

Hence,

ΨS0,k(0, vd) ≥ C0(1 + β)− βga(1) + β2uk−1(S0)) (A.4)

and

C0 − ga(1) + β2uk−1(S0) ≥ ΨS0,k(1, vd) (A.5)

From Eqs. (A.4) and (A.5) we know that ΨS0,k(0, vd) is greater than ΨS0,k(1, vd). Hence, the

optimal strategy is va,k = 1, for every k ≥ 1, since C0 ≥ 0.

Now we are ready to show that optimal strategy of the attacker.

Proof of Theorem 1. We can prove that the attacker’s optimal cost functional is a contraction

mapping. This allows us to use the Banach fixed point theorem to find iteratively the optimal

cost

un+1(x) = inf
vn∈[0,1]

{lA(x, vn) + βEvn,vDx {un(x′)}}

with un(x)→ uA(x) and u0(x) = 0 for all x ∈ S.

We use this property to find the optimal strategy of the attacker. First let us examine

the cost functional and the optimal strategy for n = 1:

u1(S0) = inf
v∈[0,1]

{−ga(v) + C01v>0},

Since ga(·) is increasing we have

u1(S0) = min{0, K1},

where K1 = C0 − ga(1). On the other hand,

u1(S1) = inf
v∈[0,1]

{Cv1v>0} = 0.

In summary, the optimal strategies are

va,1 =

1 if K1 < 0

0 otherwise
; vh,1 = 0.

Note that if K1 > 0, then attacks are not profitable and the cost function converges, that is,

u0(x) = u1(x) = uA(x). This means that va,1 and vh,1 are the optimal strategies. Intuitively,
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the attacker won’t invest in vulnerabilities if the attacks are too expensive. Therefore, va = 0

and vh = 0, which proves the first part of the theorem.

Now, if K1 < 0, then the optimal action is va,1 = 1 and vh,1 = 0. From Lemmas 6 and 7

we know that va,k = 1 for k > 1. We are interested in finding the conditions that make va = 1

and vh = 0 the optimal strategy. From Lemma 6 we know that if vh = 0, then vh,k = 0 for

all time k ≥ 1. Observe that if vh,k = 0, then uk(S1) = 0 for all k ≥ 1. This fact can be used

to compute un(S0). First, let us suppose that va = 1 and vh = 0. Then, u1(S0) = K1 and

the optimal cost for n = 2 is

u2(S0) = K1 +K1β(1− π(1, vd)) = K2.

For n = 3 we have

u3(S0) = K1 +K2β(1− π(1, vd)) = K3.

We can generalize the cost as

un(S0) = K1 +Kn−1β(1− π(1, vd)) = Kn.

This expression can be rewritten as

un(S0) = K1

n−1∑
i=0

βi(1− π(1, vd))
i.

This cost function converges to

u(S0) = lim
n→∞

un(S0) =
K1

1− β(1− π(1, vd))
. (A.6)

Now, let us consider the conditions to guarantee vh,n = 0. The cost functional at time n

is

un(S1) = inf
v∈[0,1]

{Cv1v>0 + un−1(S0)βδ(v, vp)}.

Note that the objective function is convex in (0, 1]. Hence, the minimum cost is at some

extreme value. Here, the optimal strategy is

vh,n =

1 if Cv + un−1(S0)βδ(1, vp) < 0,

0 otherwise.

Hence, hacking the system is unprofitable if

Cv + un−1(S0)βδ(1, vp) > 0, (A.7)
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for all n > 1. Since un−1(S0) ≥ un(S0) ≥ uA(S0), we know that Eq. (A.7) is satisfied for all

n > 1 if it is satisfied when n→∞. Thus, we can use Eq. (A.6) to show that vh = 0 if

Cv + β
C0 − ga(1)

1− β(1− π(1, vd))
δ(1, vp) > 0. (A.8)

Observe that if Eq. (A.8) is not satisfied, there is some k such that vh,k = 1, which implies

that vh = 1,

A.2 Defender’s Cost Function with Full Information

Proof of Theorem 2. We can prove that the defender’s cost functional is a contraction map-

ping using the same argument used to prove the Lemma 4. Hence, as in the attacker’s case,

we can use an iterative approximation of the cost function to extract some properties of

the defender’s optimal strategy. However, due to the complexity of the problem, we focus

on finding the defender’s cost function JD(x0, vA, vD), rather than the defender’s optimal

strategy.

Let us consider iteration function at state S0

uDn+1(S0) = gd(va) + inf
vd,vp

{
Cp(vp) + Cd(vd) + βuDn (S0) + βπ(va, vd)(un(S1)− uDn (S0))

}
.

Observe that in the state S0 it is optimal to set vp = 0 (i.e., vp(S0) = 0). On the other hand,

at state S1 we have

uDn+1(S1) = inf
vd,vp

{
Cp(vp) + Cd(vd) + βuDn (S1) + βδ(vh, vp)(u

D
n (S0)− uDn (S1))

}
.

In this case the optimal strategy is to set vd = 0 (i.e., vd(S1) = 0).

We can use the fact that vp(S0) = 0 and vd(S1) = 0 to find the cost function JD(x, vA, vD)

through iterations. Thus, assuming that JD0 (S0, vA, vD) = 0 and JD0 (S1, vA, vD) = 0 we have

for n = 1

JD1 (S0, vA, vD) = gd(va) + Cd(vd) = Q(vd)

and

JD1 (S1, vA, vD) = Cp(vp) = W (vp)

Now, for n = 2 we have

JD2 (S0, vA, vD) = Q(vd)(1 + β) + βπ(va, vd)(W (vp)−Q(vd)).
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and

JD2 (S1, vA, vD) = W (vp)(1 + β) + βδ(vh, vp)(Q(vd)−W (vp)).

For n = 3 we have

JD3 (S0, vA, vD) = Q(vd)(1 + β + β2) + βπ(va, vd)(W (vp)−Q(vd))r3

and

JD3 (S1, vA, vD) = W (vp)(1 + β) + βδ(vh, vp)(Q(vd)−W (vp))r3,

where

r3 = (1 + β + β(1− π(va, vd)− δ(vh, vp))).
We can generalize the cost function in the nth iteration as

JDn (S0, vA, vD) = Q(vd)
n−1∑
i=0

βi + βπ(va, vd)(W (vp)−Q(vd))rn

and

JDn (S1, vA, vD) = W (vp)
n−1∑
i=0

βi + βδ(vh, vp)(Q(vd)−W (vp))rn

where

rn =
n−2∑
i=0

βi + βrn−1(1− π(va, vd)− δ(vh, vp)), (A.9)

with r1 = 0 and r2 = 1.

Recall that the sequence JDn (x, vA, vD) converges to JD(x, vA, vD). This implies that the

the factor rn converges to an stationary value r, which can be found evaluating Eq. (A.9)

when n→∞:

lim
n→∞

rn = r =
1

1− β + βr(1− π(va, vd)− δ(vh, vp)).

From this expression we know that

r =
1

1− β
1

1 + β(π(va, vd) + δ(vh, vp)− 1)

Now we are ready to find the cost function when n→∞:

JD(S0, vA, vD) =
Q(vd)

1− β +
β

1− β
π(va, vd)(W (vp)−Q(vd))

1 + β(π(va, vd) + δ(vh, vp)− 1)

and

JD(S1, vA, vD) =
W (vp)

1− β +
β

1− β
δ(vh, vp)(Q(vd)−W (vp))

1 + β(π(va, vd) + δ(vh, vp)− 1)
.
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A.3 Defender’s Cost Function with Asymmetric Information

Proof of Theorem 3. We can generalize the cost function in Eq. (5.7) as

ĴDn (vA, vD) = gd(va)γn + (Cd(vd) + Cp(vp))
n∑
i=0

βi,

where

γn = P(xn = S0) + βγn−1 (A.10)

with γ0 = P(x0 = S0). For simplicity let us define π = π(va, vd) and δ = δ(vh, vp). Thus,

P(x1 = S0) = P(x0 = S0)(1− π) + P(x0 = S1)δ,

and replacing P(x0 = S1) = 1− P(x0 = S0) we obtain

P(x1 = S0) = P(x0 = S0)(1− π − δ) + δ = p(1− π − δ) + δ.

We can generalize the probability that the system’s state at time n is equal to S0 as

P(xn = S0) = p(1− π − δ)n + δ
n−1∑
i=0

(1− π − δ)i.

If the cost function converges when n→∞, then the parameter γn converges to γ, that

is,

lim
n→∞

γn = γ (A.11)

Replacing (A.10) into (A.11) we obtain

γ = lim
n→∞

P(xn = S0) + βγ.

This equation can be rewritten as

γ =
1

1− β lim
n→∞

P(xn = S0) =
1

1− β lim
n→∞

{
p(1− π − δ)n + δ

n−1∑
i=0

(1− π − δ)i
}
.

Observe that 0 ≤ π + δ ≤ 2. Here we need to consider three cases: i) if π = 0 and δ = 0

then

γ =
p

1− β .

ii) if π = 1 and δ = 1, then

γ =
1

1− β lim
n→∞

{
p(−1)n +

n−1∑
i=0

(−1)i

}
.
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In this case γ converges only if p = 1/2, resulting

γ =
p

1− β .

iii) if 0 < π + δ < 2 then

γ =
1

1− β lim
n→∞

{
p(1− π − δ)n + δ

1− (1− π − δ)n
π + δ

}
.

which is equal to

γ =
1

1− β
δ

π + δ
.

Thus, if p = 1/2 then

ĴD(vA, vD) = gd(va)γ +
Cd(vd) + Cp(vp)

1− β ,

where

γ =

 1
1−β

δ
π+δ , if 0 < π + δ < 2,

p
1−β , otherwise,

with π = π(va, vd) and δ = δ(vh, vp).
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Carlos Barreto was born in Garagoa, Boyacá, Colombia. He received a Bachelor of Science

degree in electrical engineering from Universidad Distrital Francisco José de Caldas in Bogotá,

Colombia in 2011. In 2013 he received a Master of Science degree in electrical engineering

with emphasis in control science from Universidad de los Andes in Bogotá, Colombia. In
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